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In this chapter spherically symmetric stars with their gravitational fields are 

studied to post-Newtonian approximation. The equations of motion of the star 

and the energy-momentum tensor are given. All these results agree with the 

corresponding results of general relativity to 1-post-Newtonian accuracy 

whereas to 2-post-Newtonian approximation the results are different from one 

another. In particular, the theorem of Birkhoff is not valid. Hence, the theory of 

gravitation in flat space-time and the general theory of relativity are different to 

this accuracy.  

6.1  Post-Newtonian Approximation of Non-Stationary 

Stars  

The equations describing a non-stationary spherically symmetric star 

depending on the distance from the centre   of the star and the time    are given 

in chapter III. The field equations are stated in formula (3.12) with   

    
 

    where   denotes the specific internal energy. The equations of 

motion are stated by (3.13) and the conservation of the whole energy-

momentum is given by (3.14). Furthermore, we have an equation of state 

(3.15).It is worth to mention that the equations of field (3.12) together with the 

equations of motion (3.13) imply the equations of the whole energy-momentum 

(3.14). Hence, the relations (3.14) can be omitted. The conservation law of mass 

(1.29b) has the form 

 
 

      
 

 

  
            

 

    
               (6.1) 

where    is given by (3.6). Hence, we have eight functions               and 

   depending on   and    and eight independent equations: (3.12) (four 

equations), (3.13) (two equations), (6.1) (one equation) and (3.15) (one 

equation).  

A suitable combination of the equations of motion (3.13) yields 

 

2 2
2 2 1 2

(4)2 2

1 2 2
2 2 1 2

(4)4 2 2

log( )

log( )

0

pc pc
fg F h

t t t

u pc pc
c fg F h

u r r r



 



 

  
 

  

   
   

   



 (6.2) 



A Theory of Gravitation in Flat Space-Time 
 

90  http://www.sciencepublishinggroup.com 

Hence, we replace equation (3.13b) by the simpler equation (6.2). In the 

following we introduce the radial velocity         instead of    and    given by 

     
   

  
   

 

  
 

 
 
 

 
 
  

   

,      
   

  
    

 

  
 

 
 
 

 
 
  

   

. (6.3) 

The post-Newtonian approximation assumes 
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 (6.4) 

We make the following ansatz for the post-Newtonian approximation  

 

1 1 2 22 4 4 2 4 4

2

(4) 3 3 42 4 4 3 3

2 1 1 2 1 1
1 0 , 1 0

2 1 1 1 1
1 0 , 0

f U S g U S
c c c c c c

F h U S F ct S
c c c c c

   
          

   

   
         

   

 (6.5) 

Here, the functions    (i=1,2,3),   (i=1,2,3) are of order      and depend on 

  and   . 

The boundary conditions must converge to zero as   goes to infinity. It holds 

        
 

  

   

   
   

 

    (6.6a) 

and 

     
 

     
 

       
   

   
    

 

   . (6.6b) 

The post-Newtonian approximation implies 

          (6.7) 

Hence, we get from the field equations (3.12) to   
 

    that 

            (6.8) 

which satisfies the differential equation 
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The third field equation gives to   
 

    

 
 

  

 

  
            

  
   

   

    
         

   

 
      (6.9b) 

where 
   

    
 must be calculated to     . The last field equation implies to    
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This equation can be integrated by the use of the boundary conditions 

implying 

 
 

  

 

  
      

  
           

 

  
. (6.9c) 

The differential equations (6.9) must be solved by the use of the boundary 

conditions. 

The solutions of (6.9a) and (6.9c) are 
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Equation (6.1) gives by the use of (6.3), (6.5) and (6.6a) to      

  

   
 

 

  

 

  
           

Differentiation of equation (6.9a) gives by the use of this relation 
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Elementary integration yields to      

 
  

   
         

 

 
. (6.11) 

Equation (6.9c) gives by differentiation and the use of (6.11) 
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Therefore, equation (6.9b) can be rewritten in the form 

 
 

  

 

  
    

  
        

 

 

   

   
            

   

 
      (6.12) 

Let us now introduce the potentials in analogy to (5.14) 
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 (6.13) 

The differential equation (6.12) has the solution 

        
 

 

   

   
              . (6.10c) 

The relations (6.10) give together with (6.5), (6.6), (6.7) and (6.8) the post-

Newtonian approximation. 

The energy-momentum tensor of matter (3.7) can now be given to accuracy 
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 (6.14a) 

and the corresponding tensor of the gravitational field  
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The expressions of these tensors to post-Newtonian approximation are 

omitted but they can be found in the article          . 
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We will now give the equations of motion to post-Newtonian accuracy of 

  
 

   . We use the differential equations (3.13) with matter the tensor (3.7), the 

differential equation (6.2) and the conservation law of mass (6.1). The post-

Newtonian approximations (6.5) with (6.6), (6.7) and (6.8) are used. 

Furthermore, the representations (6.10) are introduced. After longer calculations 

the following post-Newtonian approximations to   
 

    are received: 

 

2

2

2
2

2 2 0

1
( )

1
4 2

r r

r v
t r r

pc v
v k x dx v dx

c r r




  


 
 

 

   
    

   
 

 (6.15a) 

 2 2
2 2

2 2 2 2 0

1 1 1
( ) 4 4 3

r

r

v
t r

pc pc v
r v v k x dx v dx

r r c r r
  

 



 
 

 

     
       

     
 

 (6.15b) 

  

   
   

  

  
 

 

 

    

  
   

 

     
   

 
           

(6.15c) 
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In the equation (6.15c) we have to eliminate   by relation (6.10a). Then, the 

equations (6.15) are three integro-differential equations to post-Newtonian 

approximation   
 

    for the three unknown functions     and  . Let us assume 

an equation of state 

 
 

 
          (6.16) 
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with a suitable function  . The boundary       of the star follows from (6.15b) 

with        : 

 

   
               

        

   
  

        

  
                     .  

Therefore, we have that  

                             (6.17) 

if for a fixed time     the relation                  holds. Then, relation (6.17) 

defines the boundary of the non-stationary star to post-Newtonian accuracy. The 

equation (6.17) is independent of the equation of state (6.16) but (6.16) is in 

agreement with (6.17). 

The detailed longer derivations of the equations (6.15) are given in          . 

We will now study the potentials in the exterior of the star, i.e.        . It 

follows from relation (6.5) with (6.6), (6.7), (6.8) and (6.10)  
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It holds (see            that the gravitational mass to   
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         (6.19a) 

Hence, relation (6.18a) gives to   
 

    

        
   

   
 (6.19b) 

Relation (6.18b) can be rewritten by the use of (6.19a) to   
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In the article           it is shown that the last expression vanishes. Therefore, 

we get to   
 

    

      
   

   
   

   

   
 

 
. (6.19c) 

The relations (6.19) show that in the exterior of the star the theorem of 

Birkhoff holds to post-Newtonian accuracy. 

6.2  2-Post-Newtonian Approximation of a Non-Stationary 

Star 

We will in this sub-chapter only give some results of 2-post-Newtonian 

approximation. The study is given in           where the results are derived. 

We make the ansatz 
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where   ,   ,    and    are of order      and  ,    and    are already given in 

chapter 6.1.  

For 2-post-Newtonian the time-derivatives must be considered to higher 

approximations, i.e. let         be any function then the following approximation 

is used 

 
  

   
  

  

   
 

 
 

 

   
  

   
 

 
 

 

   
  

   
 

 
 (6.21) 

where  
  

   
 

  
is the Newtonian approximation,  

  

   
 

 
       and  

  

   
 

 
 

      are the 1-post-Newtonian and the 2-post-Newtonian approximations. We 

get from (6.20) up to 2-post-Newtonianaccuracy 
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In analogy to chapter 6.1 the expressions (6.20) and (6.22) are substituted 

into the differential equations (3.12). We get by elementary longer calculations 

differential equations for the 2-post-Newtonian approximations   ,   ,    and    

whereas the functions  ,    and    are given by (6.10). The solutions of these 

equations are given as functions of  ,  ,   and    It is worth to mention that    

implies divergent integrals by the standard 2-post Newtonian approximation. 

Hence, it is necessary to use retarded functions. Therefore, the expression of the 

energy tensor contains retardations implying gravitational waves of the order 

  
 

   . This is a well-known fact of higher order post-Newtonian 

approximations also by the use of general relativity theory. This may be the 

reason why higher order post-Newtonian approximations are not possible 

implying divergent integrals. Furthermore, the expressions for   , 
   

  
 and 

   

   
 

are not of order     . Therefore, they do not fulfil the condition on 2-post-

Newtonian approximation. The whole energy-momentum tensors of matter and 

of gravitational field can be given. The equations of motion and the 

conservation of mass are also stated where the gravitational mass    can be 

given to accuracy   
 

      We will now state the solution of the non-stationary 

star in the exterior, i.e.        .  

It follows 
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.  

The derivations of all the mentioned results of chapter 6.2 are longer 

calculations and they are not trivial. Therefore, only the exterior potentials (6.23) 

of the star are stated. It immediately follows from (6.23) that Birkhoff’s theorem 

is not valid by the use of 2-post-Newtonian approximation. This is in contrast to 

the theory of Einstein. Hence, flat space-time theory of gravitation and the 

general relativity theory of gravitation give different results to higher order 

approximations. 

The equations (6.23) give for a static spherically symmetric star up to 2-post-

Newtonian approximation 
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It follows by comparing the two solutions (6.14) and (2.39) that the constant 

  of (2.39) is of order       with 

   
 

  

      

   
         

 

 

 
      . (6.25) 
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It is worth mentioning that the factors of the expressions  
 

 
 

 

 in the formulae 

(2.39a) and (2.39b) are of order      and the factor of the expression  
 

 
 

 

in 

(2.39c) is of orderof          .But by virtue of (6.25) in the formulae (6.24) 

these factors are too great and do not satisfy 2-post-Newtonian approximation. 

Therefore, the exterior solution of a static spherically symmetric star is 

approximately given by 
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where        is stated by formula (6.25). Estimates of   fulfil the condition 

    

which is in agreement of (2.39) with (6.26). 

All these results with detailed calculations are given in the article          . 

6.3  Non-Stationary Star and the Trajectory of a 

Circulating Body 

In this sub-chapter a simple model of a non-stationary star is given. The 

solution contains small time-dependent exterior gravitational effects. The 

perturbed equations of motion of a test body moving around the non-stationary 

star are given. The test body moves away from the centre of the star during the 

epoch of collapsing star and it moves towards the centre during the epoch of 

expanding star. 

The equations of a non-stationary spherically symmetric homogeneous star to 

Newtonian accuracy as special case of chapter 6.1 (see          ) are: 
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The equation of state for a non-relativistic degenerate Fermi gas is 

 
   

 
 

 

 
 . (6.29) 

Furthermore, it is assumed that the star is homogeneous, i.e.  

        . (6.30) 

We use the ansatz 

        
 

  
     , (6.31a) 

        
        

  
       (6.31b) 

where      denotes the radius of the starand    is a fixed arbitrary constant. The 

gravitational mass to Newtonian accuracy is 

             

 
     

  

 
    . (6.32) 

It follows by the use of (6.29) to (6.32) 
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 (6.34) 

where   is a constant of integration. Furthermore, the following differential 

equation           is received 

 
      

    
 

 
     

  

      
   

     
. (6.35) 

This differential equation can be integrated yielding 

  
  

  
 

 
   

 

 
    

  

 
 

 
  

   

 
 (6.36) 

where   is an constant of integration. Knowing a solution      of (6.36) the 

relations for   ,    and    are obtained by (6.33), (6.34) and (6.32).  

There are two different kinds of solutions: 
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(1)    : The radius      contracts to a positive minimum and then it 

expands for all times. 

(2)      The radius      of the star oscillates between a mimimum radius 

   and a maximum radius   . They are given by 
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The relations (6.37) give 

 
 

 
        

   

   
. (6.38) 

Equation (6.38) fixes     by the mass and the maximum and minimum radius 

of the star. 

The approximate solution of (6.36) has the form 

      
 

 
        

 

 
                

   

            
   . (6.39) 

Hence, the solution (6.39) describes to Newtonian accuracy a non-singular 

spherically symmetric, homogeneous, pulsating star. 

The period of the oscillation is  

         
      (6.40a) 

where 

    
 

 
        (6.40b) 

is the mean radius of the oscillating object. Formula gives for the Sun with 

                       ,              ,                   

the period of oscillation 

                          . (6.41) 
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This result is in good agreement with the experimentally measured value of 

1        . 

The special case       implies by the use of (6.7) the relation 

     
 

 
 

 
     

    .  

Then, we get with              by the use of (6.38) 

    
   

  
.  

Hence, the acceleration (6.35) and the velocity (6.36) at         are zero, i.e., 

we have a stationary star with radius   . This result also follows by the use of 

(6.39). The last two relations give 
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Relation (6.34) implies for         

   
 

 

   

  
 

  

  
 

 
.  

At the centre of the star we get  

   
  

  
 

 

   
 

 

   

  
.  

Hence, we have at the centre of the star by the use of (6.29) 

 

 
 

 

 

   

    
.  

Therefore, we receive a non-singular, spherically symmetric, stationary star 

where the pressure is given by the above relation. 

We will now give the exterior gravitational field of a spherically, non-

stationary star to 2-post-Newtonian approximation. The potentials in spherical 

coordinates are given by (3.4b). We get by (6.23) up to   
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 (6.41a) 

Elementary calculations yield by the use of (6.30), (6.31), (6.33), (6.34), 

(6.32) and (6.36) the approximate value 

    
 

  

  

  
   

   

    
   

     

  
. (6.41b) 

We will now give the motion of a test particle in this gravitational field. The 

differential equations (2.53) imply by the use of (6.41) for the perturbed orbit 

      around a circle with radius    after some longer calculations (see 
         ) the equations 

 
    

     
   

  
    

 

  

   

  

   

  
. (6.42) 

This differential equation can be solved by standard methods. We get by 

suitable initial conditions and elementary longer calculations the perturbed 

radius  

        
  

 
 

   

    
 

 
          (6.43a) 

and the perturbed radial velocity 

 
 

  
    

  

 
 

   

    
 

      

     
 

    

     
 

   

    
      

      
   . (6.43b) 

The derivation of the perturbed solution is given in           where a factor 

in the denominator is missing. 

Hence, the deviations of the orbit and its velocity from a circle are very small. 

But this result although very small differs from the corresponding results of 

general relativity where by the theorem of Birkhoff no change of the orbit arises. 
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All these results are contained in the articles           and          . 

6.4  Gravitational Radiation from a Binary System 

In this sub-chapter 1-post-Newtonian approximations are used to derive the 

gravitational radiation of a system of objects at large distances from one another. 

A more explicit formula is given for a binary system. It agrees with the result of 

general relativity. 

We use the 1-post-Newtonian approximation of the potentials (5.8) and the 

tensor of matter 
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 (6.44) 

Here, the potentials   and    are stated by (5.2b) and (5.11). Subsequently, 

we use the tensors (1.32), the field equations (1.34) and the tensors of the 

gravitational energy (1.35) and of matter (1.37). It follows from (1.34) by 

multiplication with     

        
  

 
  

          
     

  
        

 
 (6.45) 

Put 

             (6.46) 

then we get 

        
  

     (6.47a)  

with 
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. (6.47b) 

In the following we use the pseudo-Euclidean geometry (1.1) and (1.5). Then, 

the differential equation (6.47) has the familiar form of a wave equation. The 

solution for out-going waves is  

      
 

  
          

      

 
            (6.48) 

where the integration is taken over the whole space   . 

Longer calculations are given in the article of Petry          . They follow 

along the lines of the papers         ,          and          in studying 

gravitational radiation by the use of general relativity. The resulting radiation 

energy   per unit time is given to   
 

    by 

 
  

  
  

 

      
 

  
 

     

     
 

  
 

     

       
 

  
 

     

      

 

  (6.49) 

where,     are the quadrupole moments. 

It holds for several point masses   with velocities       
    

    
  : 

  
     

              
   

 
 

   
 

  
  

 
   

    
 

  
 . (6.50) 

The application of (6.49) and (6.50) to a binary system gives the gravitational 

radiation 

 
  

  
  

 

  

      

               
  

  
 

 
  (6.51) 

with the following abbreviations for the two objects   and : 

        ,    
    

 
,           ,       . (6.52) 

This result is identical with that of the general relativity theory of Einstein to 

this accuracy (see          and         . Therefore, the results of both theories 

agree in the magnitude of the gravitational energy emitted by the binary pulsar 

system PSR 1913+16 (see Taylor         ). 
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All these results can be found for flat space-time theory of gravitation in 
          and for the theory of general relativity in the papers         , 

         and         . 
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