Chapter 2

Zweier I-Convergent Sequence

Spaces

“In most sciences one generation tears down what another has built and what one has established another
undoes. In mathematics alone each generation builds a new story to the old structure.”- Hankel.






Chapter 2 Zweier I-Convergent Sequence Spaces

2.1 Introduction

Let [, c and ¢y denote the Banach spaces of bounded,convergent and

null sequences respectively normed by ||z||o = sup |z
k

Each linear subspace of w, for example, )\, u C w is called a sequence

space.

A sequence space X with linear topology is called a K-space provided
each of maps p; : X — C defined by p;(z) = z; is continuous for all
1€ N.

A K-space ) is called an FK-space provided A is a complete linear metric

space.
An FK-space whose topology is normable is called a BK-space.

Let A and p be two sequence spaces and A = (a,y) is an infinite matrix
of real or complex numbers (a,), where n, k € N. Then we say that A
defines a matrix mapping from A to i, and we denote it by writing
AN — .

If for every sequence = = () € A the sequence Az = {(Ax),}, the A

transform of z is in u, where

(Az), = amzr, (neN) 2.1]

k

By (A : i), we denote the class of matrices A such that A : A — p.
Thus, A € (X : p) if and only if series on the right side of [2.1] converges
for eachn € N and every z € .

The approach of constructing new sequence spaces by means of the
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matrix domain of a particular limitation method have been recently
employed by Altay,Basar and Mursaleen[1], Basar and Altay[3],
Malkowsky[57], Ng and Lee[59], and Wang[74]. Sengoniil[68] defined
the sequence y = (y;) which is frequently used as the Z? transform of the

sequence * = (x;) i.e,
yi = px; + (1 = p)wia

where x 1 = 0,p # 1,1 < p < oo and ZP denotes the matrix Z? = (z;;)
defined by

P, (i = k),
ziw=9q 1—p, (i—1=k);(i,k€N),
0, otherwise.

Following Basar and Altay[3], Sengoniil[68] introduced the Zweier

sequence spaces Z and Z as follows
Z={r=(ay) ew:ZPx €c}
Zy={x = () €w: ZPx € co}.
Here we list below some of the results of [68] which we will need as

a reference in order to establish analogously some of the results of this

article.

Theorem 2.1.1. [68, Theorem 2.1] The sets Z and Z, are the linear
spaces with the co-ordinate wise addition and scalar multiplication which

are the BK-spaces with the norm

lz]lz = llxllz = [|272]l.

Theorem 2.1.2. [68, Theorem 2.2] The sequence spaces Z and Z, are
linearly isomorphic to the spaces c and cy respectively, i.e Z = ¢ and
2y = ¢o[See (Theorem 2.2.[18])]
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Theorem 2.1.3. [68, Theorem 2.3] The inclusions Z, C Z strictly hold
forp # 1.

Theorem 2.1.4. [68, Theorem 2.6] Z; is solid.
Theorem 2.1.5. [68, Theorem 3.6] Z is not a solid sequence space.

The following Lemmas will be used for establishing some results of this

article.

Lemma 2.1.6. Let E be a sequence space. If E is solid then E is
monotone. (see [20], page 53).

Lemma 2.1.7. If I C 2Y and MC N. If M €1, then MNN ¢1.
(see [71-72)).

2.2 Main Results

In this chapter we introduce the following classes of sequence spaces.
Z'={z = (v) €w:{k€N:I—1limZ?z = L, forsome Lc C} € I}
Zi={r=(2) Ew:{keN:I—limZPz =0} € I}
ZL={r= (1) Cw: s%p |ZPx| < oo}

We also denote by
mt =2.,nZzZ!
and

mIZO =Z.NZL

Throughout the article, for the sake of convenience now we will denote
by ZP(x1) = o/, ZP(yx) = v/, ZP(z1) = 2/ for 2,9, z € w.

Science Publishing Group 23



Zweier I-Convergent Sequence Spaces and Their Properties

Theorem 2.2.1. The classes of sequences Z', Z{, m% and m%, are linear

spaces.

Proof. We shall prove the result for the space Z!. The proof for the other
spaces will follow similarly. Let (x), (yx) € Z! and let o, 3 be scalars.
Then

I— lim|x£ — Ly| =0, for some L; € C;

I —lim |y,é — Ly| =0, for some L, € C;

That is for a given € > 0, we have

Alz{keN:]:cé—Ll\>§}eI, 2.2]

A2:{kEN:|y£—L2\>§}€I. [2.3]

we have

(az), + Byp) — (aLy + BLy)| < |o| (|2} — L) + |B8|(|yj — L)
< ‘372 — Ll’ + ’yzé — L2’

Now, by [2.2] and [2.3], {k € N : |(am£ + ﬁy,é) — (aly + BLy)| > €}
C A, U A,. Therefore (axy, + Byp) € Z!

Hence Z7 is a linear space.

Theorem 2.2.2.  The spaces mL and mlzo are normed linear
spaces,normed by
]l = sup |27(2)]. 24]

where xé = ZP(x)

Proof. It is clear from Theorem 2.2.1 that m% and m%, are linear spaces.

It is easy to verify that [2.4] defines a norm on the spaces m’ and méo.
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Theorem 2.2.3. A sequence z = (1) € mb I-converges if and only if

for every € > 0 there exists N, € N such that

{(keN: |z, — ) | <e} emb [2.5]

Proof. Suppose that L = I — lim 2/. Then

Bgz{keN:|x£—L|<§}emIZ for all € > 0.

Fix an N, € B.. Then we have
€

2

€
o, =il < lay, — LI+ |L—af| <5 +5=¢

which holds for all £ € B..
Hence {k € N : |} — x§V| <e}emb.

Conversely, suppose that {k € N : |x£ — x?v| < ¢} € mL. That is
keN:|zl — 2l | <e} €ml forall e > 0. Then the set
kTN, z

C’ez{kEN:xé € [xf\,e—e,x]/\,g—ke]}emfz for all e > 0.

Let J. = [xf\, — €, xf\, + €. If we fix an ¢ > 0 then we have C, € mZ as
well as C'e € m%. Hence C. N C's € m%. This implies that

J=J.NJs#¢

that is
{keN:al eJ}emk

that is
diamJ < diamJ,

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Je=1h 2L D ... DIk D .
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with the property that diam1;, < %diaml x—1 for (k=2,3,4,.....) and
{keN: a:,/g € I} € mL for (k=1,2,3,4,......). Then there exists a £ € NI},
where k& € N such that ¢/ = I — lim a/, thatis L = I — lim z/.

Theorem 2.2.4. Let I be an admissible ideal. Then the following are
equivalent.

(a) (zy) € Z7;
(b) there exists (yx) € Z such that z, = yy, for a.ak.rl;

(c) there exists (yx) € Z and (z;) € Z{ such that x;, = y, + 2, for all
keNand{keN: |y, —L| >e} e,

(d) there exists a subset K = {k; < ks....} of Nsuch that K € £(/) and

lim |z, — L| = 0.
n—oo

Proof. (a) implies (b). Let (x;,) € Z. Then there exists L € C such that

{(keN:|z, —L|>e el

Let (m;) be an increasing sequence with m; € N such that

1
{kgmt:]:cé—leg}eI.

Define a sequence (yi) as

Y = Tk, forall k < m;.

Form;, < k <myq,t € N.

| o, e, - L)<t
Yk L, otherwise.
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Then (yx) € Z and form the following inclusion

{kﬁmt:xk#yk}g{kgmt:|x£—L|26}6[.

We get x; = yi, for a.a.krl

(b) implies (c). For (z) € Z!. Then there exists (y;) € Z such that
x = yi, foraakrl. Let K = {k € N: x; # y,.}, then K € I. Define a
sequence (z) as

rr— Y, ifkeK,
2. =
g 0, otherwise.

Then 2;, € Z} and y;, € Z.
(c) implies (d). Let P, = {k € N: |z;| > ¢} € [ and

K =P ={k <ky<ks<..}e£().

Then we have lim |z, — L| = 0.
n—oo

(d) implies (a). Let K = {k1 < ko < k3 < ...} € £(]) and lim |z, —
n—o0
L| = 0. Then for any € > 0, and Lemma , we have

{(keN:|z, —L| >} CKU{keK: |z, —L| > ¢}
Thus (z;,) € Z7.
Theorem 2.2.5. The inclusions Z/ c Z! C Z! are proper.
Proof. Let () € Z!. Then there exists L € C such that
[ —lim|z) — L| =0
We have |z}| < 1|z} — L| + 1|L|. Taking the supremum over & on both
sides we get (z;) € Z1. The inclusion Z/ C Z7 is obvious.
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Theorem 2.2.6. The function % : m’ — R is the Lipschitz function,
where

mL = ZI'n Z,, and hence uniformly continuous.
Proof. Let ,y € mL, x # y. Then the sets
Ar={k eN:|af - h(z/)] > ]2/ —y/|l.} € I,

Ay ={k eN: |y, — )| > ||/ —y/||.} € L.

Thus the sets,
B, ={keN: |z, — h(z))| < ||/ —y/||.} € mL,

B, ={keN:|y,—n)| <2/ —y/|l.} € mL.

Hence also B = B, N B, € m%, so that B # ¢. Now taking k in B,

(2! = B(y))| < |R(z!) — xp] + o) —ypl + v/ — h(y)| < 3|2/ —y/]]..

Thus A is a Lipschitz function. For mIZO the result can be proved

similarly.
Theorem 2.2.7. If x,y € mZL, then (x.y) € mL and h(zy) = h(z)h(y).
Proof. For e > 0
B, ={keN:|z/ —hz))] < e} € mk,
By = (ke N: |y — h(y))| < e} € mb
Now,
2!y = h(x iy = |2y — 2 hy') + 2/ Wy’ ) — W/ Yh(y))]
< |2/ |ly" = n(y")| + Iny)la" = ()| [2.6]
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AsmL C Z., there exists an M € R such that |2/| < M and
|R(y/)| < M. Using eqn[2.6] we get

|2/ .y — R Yh(y)| < Me+ Me = 2Me

For all k € B, N B, € m%. Hence (z.y) € m% and h(zy) = h(z)h(y).
For mlz0 the result can be proved similarly.

Theorem 2.2.8. The spaces Z} and mIZO are solid and monotone .

Proof. We shall prove the result for Z[. Let (z;) € Z{. Then

I —lim 2| =0 [2.7]

Let (a4) be a sequence of scalars with |ag| < 1 for all £ € N. Then the

result follows from [2.7] and the following inequality |aka7,/€| < o |:1:,/€| <

|x,/€| for all k € N. That the space Z{ is monotone follows from the Lemma

2.1.6. For mlz0 the result can be proved similarly.

Theorem 2.2.9. The spaces Z! and mIZ are neither monotone nor solid,

if I is neither maximal nor / = /7 in general .

Proof. Here we give a counter example. Let I = I5. Consider the K-step
space X of X defined as follows, Let (z;) € X and let (yx) € Xk be
such that

(W) = (z), ifkis odd,
) = 1, otherwise.

Consider the sequence (:Bé) defined by (:Bé) = k~! forall £ € N. Then
(z1) € Z7 but its K-stepspace preimage does not belong to Z7. Thus Z7

is not monotone. Hence Z7 is not solid.
Theorem 2.2.10. The spaces Z! and Z are sequence algebras.
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Proof. We prove that Z! is a sequence algebra. Let (x3), (yr) € Z{.
Then
[ —lim|z]| =0

and
I —lim |y,é| =0

Then we have
[ —1lim |(z}.y))] =0

Thus (z1.yx) € Z1. Hence Z! is a sequence algebra. For the space Z7,

the result can be proved similarly.

Theorem 2.2.11. The spaces Z! and Z! are not convergence free in

general.

Proof. Here we give a counter example. Let / = [;. Consider the

sequence (:cé) and (y,é) defined by

1
xézz and y,ﬁ:k forallk € N

Then (x;,) € Z! and Z{, but (y,.) ¢ Z! and ZI. Hence the spaces Z!

and Z! are not convergence free.

Theorem 2.2.12. If I is not maximal and I # I}, then the spaces Z’ and

Z! are not symmetric.

Proof. Let A € I be infinite. If

/ 1, fork e A,
x) = ‘
0, otherwise.

Then by lemma 1.16. x5, € Z/ C Z!. Let K C N be such that K ¢ [
andN— K ¢ [.Let¢p: K — Aand ¢ : N— K — N — A be bijections,
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then the map 7 : N — N defined by

{ o(k), fork e K,
(k) = .
W(k), otherwise.

is a permutation on N, but ;) ¢ Z’ and z,(,) ¢ Z{. Hence Z' and Z{

are not symmetric.

Theorem 2.2.13. The sequence spaces Z' and Z! are linearly

i i c c ively, i. c = ¢
isomorphic to the spaces ¢! and cf, respectively, i.e Z! = ¢/ and Z] = ¢}

Proof. We shall prove the result for the space Z’ and ¢!. The proof for
the other spaces will follow similarly. We need to show that there exists a
linear bijection between the spaces Z7 and ¢!. Defineamap 7 : Z/ — ¢!
such that z — 2/ = Tx

T(xg) = pry + (1 —plag_y = xé
where x_1 = 0,p # 1, 1 < p < oo. Clearly T is linear. Further, it is trivial

that z = 0 = (0,0,0,...... ) whenever Tz = 0 and hence injective. Let

xé € c! and define the sequence x = z;, by

7

k
re=MY (-DMINFl (ieN)
i=0
where M = % and N = %. Then we have

k
lim pry + (1 — p)zg— = p’}LYgOMZ(—l)k_iNk_ix{+

k—o00
=0

e
—

(1 —-p) lim M (—1)’“4]\7’“*%? = lim xé
k—00 - k—o00

Il
=)

which shows that z € Z7.
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Hence T is a linear bijection. Also we have ||z||. = ||Z?z||.. Therefore

||| = sup [pzy + (1 — p)zp—_1]
keN

k—1
—sup|pMZ k: i ki /+ 1—p MZ k iNk—ixi/|
=0

= sup [z| = []2||s
keN

Hence 21 = ¢!

32 Science Publishing Group



	ISBN-978-1-940366-42-5-xx-WholeBook 27
	ISBN-978-1-940366-42-5-xx-WholeBook 28
	ISBN-978-1-940366-42-5-xx-WholeBook 29
	ISBN-978-1-940366-42-5-xx-WholeBook 30
	ISBN-978-1-940366-42-5-xx-WholeBook 31
	ISBN-978-1-940366-42-5-xx-WholeBook 32
	ISBN-978-1-940366-42-5-xx-WholeBook 33
	ISBN-978-1-940366-42-5-xx-WholeBook 34
	ISBN-978-1-940366-42-5-xx-WholeBook 35
	ISBN-978-1-940366-42-5-xx-WholeBook 36
	ISBN-978-1-940366-42-5-xx-WholeBook 37
	ISBN-978-1-940366-42-5-xx-WholeBook 38
	ISBN-978-1-940366-42-5-xx-WholeBook 39
	ISBN-978-1-940366-42-5-xx-WholeBook 40

