
Chapter 2

Zweier I-Convergent Sequence
Spaces

“In most sciences one generation tears down what another has built and what one has established another
undoes. In mathematics alone each generation builds a new story to the old structure.”- Hankel.





Chapter 2 Zweier I-Convergent Sequence Spaces

2.1 Introduction

Let l∞, c and c0 denote the Banach spaces of bounded,convergent and
null sequences respectively normed by ||x||∞ = sup

k
|xk|.

Each linear subspace of ω, for example, λ, µ ⊂ ω is called a sequence
space.

A sequence space X with linear topology is called a K-space provided
each of maps pi : X −→ C defined by pi(x) = xi is continuous for all
i ∈ N.

A K-space λ is called an FK-space provided λ is a complete linear metric
space.

An FK-space whose topology is normable is called a BK-space.

Let λ and µ be two sequence spaces and A = (ank) is an infinite matrix
of real or complex numbers (ank), where n, k ∈ N. Then we say that A
defines a matrix mapping from λ to µ, and we denote it by writing
A : λ −→ µ.

If for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A
transform of x is in µ, where

(Ax)n =
∑
k

ankxk, (n ∈ N). [2.1]

By (λ : µ), we denote the class of matrices A such that A : λ −→ µ.

Thus, A ∈ (λ : µ) if and only if series on the right side of [2.1] converges
for each n ∈ N and every x ∈ λ.

The approach of constructing new sequence spaces by means of the
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matrix domain of a particular limitation method have been recently
employed by Altay,Başar and Mursaleen[1], Başar and Altay[3],
Malkowsky[57], Ng and Lee[59], and Wang[74]. Şengönül[68] defined
the sequence y = (yi) which is frequently used as the Zp transform of the
sequence x = (xi) i.e,

yi = pxi + (1− p)xi−1

where x−1 = 0, p 6= 1, 1 < p < ∞ and Zp denotes the matrix Zp = (zik)

defined by

zik =


p, (i = k),

1− p, (i− 1 = k); (i, k ∈ N),

0, otherwise.

Following Başar and Altay[3], Şengönül[68] introduced the Zweier
sequence spaces Z and Z0 as follows

Z = {x = (xk) ∈ ω : Zpx ∈ c}

Z0 = {x = (xk) ∈ ω : Zpx ∈ c0}.

Here we list below some of the results of [68] which we will need as
a reference in order to establish analogously some of the results of this
article.

Theorem 2.1.1. [68, Theorem 2.1] The sets Z and Z0 are the linear
spaces with the co-ordinate wise addition and scalar multiplication which
are the BK-spaces with the norm

||x||Z = ||x||Z0 = ||Zpx||c.

Theorem 2.1.2. [68, Theorem 2.2] The sequence spaces Z and Z0 are
linearly isomorphic to the spaces c and c0 respectively, i.e Z ∼= c and
Z0
∼= c0[See (Theorem 2.2.[18])]
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Theorem 2.1.3. [68, Theorem 2.3] The inclusions Z0 ⊂ Z strictly hold
for p 6= 1.

Theorem 2.1.4. [68, Theorem 2.6] Z0 is solid.

Theorem 2.1.5. [68, Theorem 3.6] Z is not a solid sequence space.

The following Lemmas will be used for establishing some results of this
article.

Lemma 2.1.6. Let E be a sequence space. If E is solid then E is
monotone. (see [20], page 53).

Lemma 2.1.7. If I ⊂ 2N and M⊆ N. If M /∈I, then M∩N /∈I.
(see [71-72]).

2.2 Main Results

In this chapter we introduce the following classes of sequence spaces.

ZI = {x = (xk) ∈ ω : {k ∈ N : I − limZpx = L, for some L∈ C} ∈ I}

ZI0 = {x = (xk) ∈ ω : {k ∈ N : I − limZpx = 0} ∈ I}

ZI∞ = {x = (xk) ∈ ω : sup
k
|Zpx| <∞}.

We also denote by
mI
Z = Z∞ ∩ ZI

and
mI
Z0

= Z∞ ∩ ZI0

Throughout the article, for the sake of convenience now we will denote
by Zp(xk) = x/, Zp(yk) = y/, Zp(zk) = z/ for x, y, z ∈ ω.
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Theorem 2.2.1. The classes of sequences ZI ,ZI0 ,mI
Z andmI

Z0
are linear

spaces.

Proof. We shall prove the result for the space ZI . The proof for the other
spaces will follow similarly. Let (xk), (yk) ∈ ZI and let α, β be scalars.
Then

I − lim |x/k − L1| = 0, for some L1 ∈ C;

I − lim |y/k − L2| = 0, for some L2 ∈ C;

That is for a given ε > 0, we have

A1 = {k ∈ N : |x/k − L1| >
ε

2
} ∈ I, [2.2]

A2 = {k ∈ N : |y/k − L2| >
ε

2
} ∈ I. [2.3]

we have

|(αx/k + βy
/
k)− (αL1 + βL2)| ≤ |α|(|x/k − L1|) + |β|(|y/k − L2|)

≤ |x/k − L1| + |y/k − L2|

Now, by [2.2] and [2.3], {k ∈ N : |(αx/k + βy
/
k) − (αL1 + βL2)| > ε}

⊂ A1 ∪ A2. Therefore (αxk + βyk) ∈ ZI

Hence ZI is a linear space.

Theorem 2.2.2. The spaces mI
Z and mI

Z0
are normed linear

spaces,normed by

||x/k||∗ = sup
k
|Zp(x)|. [2.4]

where x/k = Zp(x)

Proof. It is clear from Theorem 2.2.1 that mI
Z and mI

Z0
are linear spaces.

It is easy to verify that [2.4] defines a norm on the spaces mI
Z and mI

Z0
.
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Theorem 2.2.3. A sequence x = (xk) ∈ mI
Z I-converges if and only if

for every ε > 0 there exists Nε ∈ N such that

{k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z [2.5]

Proof. Suppose that L = I − limx/. Then

Bε = {k ∈ N : |x/k − L| <
ε

2
} ∈ mI

Z for all ε > 0.

Fix an Nε ∈ Bε. Then we have

|x/Nε − x
/
k| ≤ |x

/
Nε
− L|+ |L− x/k| <

ε

2
+
ε

2
= ε

which holds for all k ∈ Bε.

Hence {k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z .

Conversely, suppose that {k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z . That is
{k ∈ N : |x/k − x

/
Nε
| < ε} ∈ mI

Z for all ε > 0. Then the set

Cε = {k ∈ N : x
/
k ∈ [x

/
Nε
− ε, x/Nε + ε]} ∈ mI

Z for all ε > 0.

Let Jε = [x
/
Nε
− ε, x/Nε + ε]. If we fix an ε > 0 then we have Cε ∈ mI

Z as
well as C ε

2
∈ mI

Z . Hence Cε ∩ C ε
2
∈ mI

Z . This implies that

J = Jε ∩ J ε
2
6= φ

that is
{k ∈ N : x

/
k ∈ J} ∈ m

I
Z

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........
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with the property that diamIk ≤ 1
2
diamIk−1 for (k=2,3,4,.....) and

{k ∈ N : x
/
k ∈ Ik} ∈ mI

Z for (k=1,2,3,4,......). Then there exists a ξ ∈ ∩Ik
where k ∈ N such that ξ/ = I − limx/, that is L = I − limx/.

Theorem 2.2.4. Let I be an admissible ideal. Then the following are
equivalent.

(a) (xk) ∈ ZI ;

(b) there exists (yk) ∈ Z such that xk = yk, for a.a.k.r.I;

(c) there exists (yk) ∈ Z and (zk) ∈ ZI0 such that xk = yk + zk for all
k ∈ N and {k ∈ N : |yk − L| ≥ ε} ∈ I ;

(d) there exists a subset K = {k1 < k2....} of N such that K ∈ £(I) and
lim
n→∞

|xkn − L| = 0.

Proof. (a) implies (b). Let (xk) ∈ ZI . Then there exists L ∈ C such that

{k ∈ N : |x/k − L| ≥ ε} ∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that

{k ≤ mt : |x/k − L| ≥
1

t
} ∈ I.

Define a sequence (yk) as

yk = xk, for all k ≤ m1.

For mt < k ≤ mt+1, t ∈ N.

yk =

{
xk, if |x/k − L| < t−1,

L, otherwise.
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Then (yk) ∈ Z and form the following inclusion

{k ≤ mt : xk 6= yk} ⊆ {k ≤ mt : |x/k − L| ≥ ε} ∈ I.

We get xk = yk, for a.a.k.r.I.

(b) implies (c). For (xk) ∈ ZI . Then there exists (yk) ∈ Z such that
xk = yk, for a.a.k.r.I. Let K = {k ∈ N : xk 6= yk}, then K ∈ I . Define a
sequence (zk) as

zk =

{
xk − yk, if k ∈ K,

0, otherwise.

Then zk ∈ ZI0 and yk ∈ Z.

(c) implies (d). Let P1 = {k ∈ N : |zk| ≥ ε} ∈ I and

K = P c
1 = {k1 < k2 < k3 < ...} ∈ £(I).

Then we have lim
n→∞

|xkn − L| = 0.

(d) implies (a). Let K = {k1 < k2 < k3 < ...} ∈ £(I) and lim
n→∞

|xkn −
L| = 0. Then for any ε > 0, and Lemma , we have

{k ∈ N : |x/k − L| ≥ ε} ⊆ Kc ∪ {k ∈ K : |x/k − L| ≥ ε}.

Thus (xk) ∈ ZI .

Theorem 2.2.5. The inclusions ZI0 ⊂ ZI ⊂ ZI∞ are proper.

Proof. Let (xk) ∈ ZI . Then there exists L ∈ C such that

I − lim |x/k − L| = 0

We have |x/k| ≤ 1
2
|x/k − L|+ 1

2
|L|. Taking the supremum over k on both

sides we get (xk) ∈ ZI∞. The inclusion ZI0 ⊂ ZI is obvious.
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Theorem 2.2.6. The function ~ : mI
Z → R is the Lipschitz function,

where
mI
Z = ZI ∩ Z∞, and hence uniformly continuous.

Proof. Let x, y ∈ mI
Z , x 6= y. Then the sets

Ax = {k ∈ N : |x/k − ~(x/)| ≥ ||x/ − y/||∗} ∈ I,

Ay = {k ∈ N : |y/k − ~(y/)| ≥ ||x/ − y/||∗} ∈ I.

Thus the sets,

Bx = {k ∈ N : |x/k − ~(x/)| < ||x/ − y/||∗} ∈ mI
Z ,

By = {k ∈ N : |y/k − ~(y/)| < ||x/ − y/||∗} ∈ mI
Z .

Hence also B = Bx ∩By ∈ mI
Z , so that B 6= φ. Now taking k in B,

|~(x/)− ~(y/)| ≤ |~(x/)− x/k|+ |x
/
k − y

/
k|+ |y

/− ~(y/)| ≤ 3||x/− y/||∗.

Thus ~ is a Lipschitz function. For mI
Z0

the result can be proved
similarly.

Theorem 2.2.7. If x, y ∈ mI
Z , then (x.y) ∈ mI

Z and ~(xy) = ~(x)~(y).

Proof. For ε > 0

Bx = {k ∈ N : |x/ − ~(x/)| < ε} ∈ mI
Z ,

By = {k ∈ N : |y/ − ~(y/)| < ε} ∈ mI
Z .

Now,

|x/.y/ − ~(x/)~(y/)| = |x/.y/ − x/~(y/) + x/~(y/)− ~(x/)~(y/)|

≤ |x/||y/ − ~(y/)|+ |~(y/)||x/ − ~(x/)| [2.6]
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As mI
Z ⊆ Z∞, there exists an M ∈ R such that |x/| < M and

|~(y/)| < M . Using eqn[2.6] we get

|x/.y/ − ~(x/)~(y/)| ≤Mε+Mε = 2Mε

For all k ∈ Bx ∩ By ∈ mI
Z . Hence (x.y) ∈ mI

Z and ~(xy) = ~(x)~(y).
For mI

Z0
the result can be proved similarly.

Theorem 2.2.8. The spaces ZI0 and mI
Z0

are solid and monotone .

Proof. We shall prove the result for ZI0 . Let (xk) ∈ ZI0 . Then

I − lim
k
|x/k| = 0 [2.7]

Let (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Then the
result follows from [2.7] and the following inequality |αkx/k| ≤ |αk||x

/
k| ≤

|x/k| for all k ∈ N. That the spaceZI0 is monotone follows from the Lemma
2.1.6. For mI

Z0
the result can be proved similarly.

Theorem 2.2.9. The spaces ZI and mI
Z are neither monotone nor solid,

if I is neither maximal nor I = If in general .

Proof. Here we give a counter example. Let I = Iδ. Consider the K-step
space XK of X defined as follows, Let (xk) ∈ X and let (yk) ∈ XK be
such that

(y
/
k) =

{
(x

/
k), if k is odd,

1, otherwise.

Consider the sequence (x
/
k) defined by (x

/
k) = k−1 for all k ∈ N. Then

(xk) ∈ ZI but its K-stepspace preimage does not belong to ZI . Thus ZI

is not monotone. Hence ZI is not solid.

Theorem 2.2.10. The spaces ZI and ZI0 are sequence algebras.
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Proof. We prove that ZI0 is a sequence algebra. Let (xk), (yk) ∈ ZI0 .
Then

I − lim |x/k| = 0

and
I − lim |y/k| = 0

Then we have
I − lim |(x/k.y

/
k)| = 0

Thus (xk.yk) ∈ ZI0 . Hence ZI0 is a sequence algebra. For the space ZI ,
the result can be proved similarly.

Theorem 2.2.11. The spaces ZI and ZI0 are not convergence free in
general.

Proof. Here we give a counter example. Let I = If . Consider the
sequence (x

/
k) and (y

/
k) defined by

x
/
k =

1

k
and y

/
k = k for all k ∈ N

Then (xk) ∈ ZI and ZI0 , but (yk) /∈ ZI and ZI0 . Hence the spaces ZI

and ZI0 are not convergence free.

Theorem 2.2.12. If I is not maximal and I 6= If , then the spaces ZI and
ZI0 are not symmetric.

Proof. Let A ∈ I be infinite. If

x
/
k =

{
1, for k ∈ A,
0, otherwise.

Then by lemma 1.16. xk ∈ ZI0 ⊂ ZI . Let K ⊂ N be such that K /∈ I
and N −K /∈ I . Let φ : K → A and ψ : N −K → N − A be bijections,
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then the map π : N→ N defined by

π(k) =

{
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but xπ(k) /∈ ZI and xπ(k) /∈ ZI0 . Hence ZI and ZI0
are not symmetric.

Theorem 2.2.13. The sequence spaces ZI and ZI0 are linearly
isomorphic to the spaces cI and cI0 respectively, i.e ZI ∼= cI and ZI0 ∼= cI0.

Proof. We shall prove the result for the space ZI and cI . The proof for
the other spaces will follow similarly. We need to show that there exists a
linear bijection between the spacesZI and cI . Define a map T : ZI −→ cI

such that x→ x/ = Tx

T (xk) = pxk + (1− p)xk−1 = x
/
k

where x−1 = 0, p 6= 1, 1 < p <∞. Clearly T is linear. Further, it is trivial
that x = 0 = (0, 0, 0, ......) whenever Tx = 0 and hence injective. Let
x
/
k ∈ cI and define the sequence x = xk by

xk = M
k∑
i=0

(−1)k−iNk−ix
/
i . (i ∈ N)

where M = 1
p

and N = 1−p
p

. Then we have

lim
k→∞

pxk + (1− p)xk−1 = p lim
k→∞

M
k∑
i=0

(−1)k−iNk−ix
/
i+

(1− p) lim
k→∞

M
k−1∑
i=0

(−1)k−iNk−ix
/
i = lim

k→∞
x
/
k

which shows that x ∈ ZI .
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Hence T is a linear bijection. Also we have ||x||∗ = ||Zpx||c. Therefore

||x||∗ = sup
k∈N
|pxk + (1− p)xk−1|

= sup
k∈N
|pM

k∑
i=0

(−1)k−iNk−ix
/
i + (1− p)M

k−1∑
i=0

(−1)k−iNk−ix
/
i |

= sup
k∈N
|x/k| = ||x

/||cI

Hence ZI ∼= cI .
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