Chapter 4

Zweier I-Convergent Sequence
Spaces Defined by Orlicz

Function

“Mathematics is a free flow of thoughts and concepts which a mathematicians, in the same way as musician
does with the tones of music and a poet with words, puts together into theorems and theories”- Orlicz.
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4.1 Introduction

An Orlicz function is a function M : [0,00) — [0,00) which is
continuous, nondecreasing and convex with M (0) = 0, M(x) > 0 for
x> 0and M(x) — oo, as x — oo.

If convexity of M is replaced by M (z + y) < M (x) + M (y), then it is
called a Modulus function, defined and discussed by Nakano [58], Ruckle
[62-64].

An Orlicz function M can always be represented in the following integral
form M (x fo t)dt, where 7 is known as the kernel of M, is right
dlfferentlable fort > 0, n(0) = 0, n(t) > 0, n is non-decreasing and
n(t) — oo ast — oo.

Lindenstrauss and Tzafriri [55] used the idea of Orlicz sequence space;

Ly = {xew:ZM(M) < 00, for some p>0};

k=1 P

which is a Banach space with the norm
||
|||y =inf < p>0: E M <1y.
p

Remark . An Orlicz function satisfies the inequality

M(Ax) < AM(z) forall Awith0 < A < 1.

For more details on Orlicz sequence spaces we refer to [55], [21-28].
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4.2 Main Results

In this chapter we introduce the following classes of sequence spaces:

L= L
ZIM) = {(z1) €Ew: I—limM(M) = 0 for some L and p > 0},
p
24
ZEM) = {(x1) € w: I —lim M(~*) = 0 for some p > 0},
p
74
ZL (M) = {(z) € w: sup M(—2) < oo for some p > 0}.
k P

Also we denote by
mz(M) = Zo (M) N 2'(M)

and
mb, (M) = Z(M) N Z§(M).

Theorem 4.2.1. For any Orlicz function M, the classes of sequences
ZH (M), Z{ (M), m% (M) and m% (M) are linear spaces.

Proof. We shall prove the result for the space Z/(M). The proof for the
other spaces will follow similarly.

Let (z), (yr) € Z7(M) and let o, 3 be scalars. Then there exists
positive numbers p; and ps such that

@) — Ly|

I —lim M (
P1

) =0, for some L; € C;
[y = Lo|

I —lim M (
P2

) =0, for some Ly € C.
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That is for a given € > 0, we have

|2, — Ly o€

Av={keN: M(HE =) > S el [4.1]
/
AQ:{kEN:M(W)>§}EI. [4.2]

Let p3 = max{2|a|p1,2|B|p2}. Since M is non-decreasing and convex
function, we have

(o), + Byp) — (aLy + BLy))|
P3

M( )
/ /
P3 P3
/ /
|xk L1|>—|—M(|Z/k L2|

< M(
P1 P2

).

Now, by [4.1] and [4.2],

(ax) + Byp) — (aLy + BLo)]
P3

{keN:M( ) > €} C AU As.

Therefore
(azy + Byr) € Z1(M).

Hence Z!(M) is a linear space.

Theorem 4.2.2. The spaces m% (M) and m% (M) are Banach spaces

normed by
]| = inf{p > 0 - sup M(ZE) < 1),
k p

Proof. Proof of this result is easy in view of the existing techniques and

therefore is omitted.
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Theorem 4.2.3. Let M; and M, be Orlicz functions that satisfy the A,-
condition. Then

[b] X (M) N X (M) C X(M,; + My) for X = Z', Z] mb and m’ .

Proof. [a] Let (z3) € ZL(M,). Then there exists p > 0 such that
74
I— hmM (—) = 0. [4.3]
p

Let ¢ > 0 and choose § with 0 < ¢ < 1 such that M;(t) < e for
0 <t <4. Write )
|z
= My(FE),
o )
and consider

lim  Mi(y) = hm Ml(yk)—i— lim M (yx).
Y >0,keN

0<y <d,keN Y <0,k

We have

< .l . .
ykllér%eN Ml(yk) My (2) ykélél};clEN(yk) [4 4]

For (y;) > J, we have

() < (5) <1+ (5).

Since M is non-decreasing and convex, it follows that

Mi(y) < My(1+ (%

1 2y
) < Ian@ + 1),

2 )

Since M, satisfies the /\,-condition, we have

M) < 2K 2) + 2K (2

Yk
K SK(EM(2) = K%

) Vi (2).
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Hence

lim M (yr) < max(1, K6~ 'M(2)) lim (y). [4.5]

Yy >0,keN Yy >0,keEN

From [4.3], [4.4] and [4.5], we have (1) € Z!(M;.M,). Thus
ZH(My) € ZF( M. My).

The other cases can be proved similarly.

[b] Let
(z) € ZL(My) N ZL(My).

Then there exists p > 0 such that

2
I —hli(M) =0

P

and y
I— hmMg(M) = 0.

P

The rest of the proof follows from the following equality

. 20y o (R i 2 (1
lim(M; + Ms)(—%) = lim My (—%) + lim My (—*
keN p keN P keN p

).

Therem 4.2.4. The spaces Z{ (M) and m% (M) are solid and monotone.

Proof. We shall prove the result for ZJ (M ). For m% (M) the result can
be proved similarly. Let (z) € Z{(M). Then there exists p > 0 such that

E RS

I— hm M( )=0. [4.6]

=[5

Let (o) be a sequence of scalars with || < 1 for all £ € N. Then the

result follows from [4.6] and the following inequality

A

M(

A EA
) < |og|M(—=) < M(—=) forall k € N.
p P
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By Lemma 4.1.1, a sequence space E is solid implies that E is monotone.

We have the space Z/ (M) is monotone.

Theorem 4.2.5. The spaces Z/(M) and mL (M) are neither solid nor

monotone in general.
Proof. Here we give a counter example.

Let [ = I; and M(z) = 2? for all x € [0,00). Consider the K-step
space X (M) of X (M) defined as follows, let (z;) € X (M) and let
(yx) € X (M) be such that

Tk, if k is even,
Yk = .
0, otherwise.

Consider the sequence z; defined by z;, = 1 for all £ € N. Then
() € Z1(M) but its K-stepspace preimage does not belong to Z/(M).
Thus Z7(M) is not monotone. Hence Z?(M) is not solid.

Theorem 4.2.6. The spaces Z! (M) and Z (M) are not convergence free

in general.

Proof. Here we give a counter example. Let I = Iy and M (z) = 2* for

all z € [0, 00). Consider the sequence () and (y) defined by
1
Ty = z and y, = k forall £ € N.

Then (z;) € Z!(M) and ZJ(M), but (y) ¢ Z'(M) and Z{(M).
Hence the spaces Z/(M) and Z/ (M) are not convergence free.

Theorem 4.2.7. The spaces Z! (M) and Z'(M) are sequence algebras.
Proof. We prove that Z/(M) is a sequence algebra. For the space
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Z1(M), the result can be proved similarly. Let (z3), (yr) € ZL(M). Then

/
I—limM(M) =0 for some p; >0
P1

and
/

I— limM(@) =0 for some py > 0.
P2

Let p = py.p2 > 0. Then we can show that

/.
7 — tim ar ([l
p

Thus
(Tr-yx) € Zé(M).

Hence Z! (M) is a sequence algebra.

Theorem 4.2.8. Let M be an Orlicz function. Then the inclusions
Zé(M) C ZI(M) C Zio(]\/[) hold.

Proof. Let (z) € ZI(M). Then there exists L € C and p > 0 such that

- L
It ar (=
p
We have , ;
ol Lol =Ll 1L
M(ZE) < cM(———) + SM(—).
2p 2 p 2 p

Taking supremum over k both sides we get

(z) € ZL(M).

The inclusion
Z§(M) c Z'(M)
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is obvious.

Theorem 4.2.9. If I is not maximal and I # I}, then the spaces Z!(M)

and Z! (M) are not symmetric.

Proof. Let A € I be infinite and M (z) = z for all z € [0, 00). If

1, for k € A,
T = .
0, otherwise.

Then (x;,) € ZLH(M) c ZI1(M), by lemma 3.1.8. Let K C N be such
that K ¢ JandN—- K ¢ [. Let¢: K - Aandy : N— K - N— Abe
bijections, then the map 7 : N — N defined by

o(k), for k € K,
Ww(k), otherwise.

is a permutation on N, but (z)) & Z'(M) and () ¢ Z{(M). Hence
ZI(M) and Z'(M)are not symmetric.
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