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There are two different approaches to determining the optimal parameters of 

planar cascades of profiles for the designed axial turbine flow path. 

The first one which is suitable for the early stages of design, does not takes 

into account the real profile shape, i.e. based on the involvement of empirical 

data on loss ratio, geometrical and strength characteristics depending on the 

most important dimensionless criteria (the relative height and pitch, geometric 

entry and exit angles, Mach and Reynolds numbers, relative roughness, etc.). 

The advantages of this approach are shown in the calculation of the optimal 

parameters of stages or groups of stages, as allow fairly quickly and accurately 

assess the mutual communication by various factors – aerodynamics, strength, 

technological and other, affecting the appearance of created design – and make 

an informed decision. 

The second approach involves a rigorous solution of the profile contour 

optimal shape determining problem on the basis of a viscous compressible fluid 

flow modeling with varying impermeability boundary conditions of the profile 

walls. In practice, the task is divided into a number of sub-problems (building 

the profile of a certain class curve segments, the calculation of cascade fluid 

flow, the calculation of the boundary layer and the energy loss) solved 

repeatedly in accordance with the used optimization algorithm, designed to 

search for the profile configuration that provides an extremum of selected 

quality criteria (e.g., loss factor) with constraints related to strength, and other 

technological factors. 

5.1.  The Cascade’s Basic Geometry  

Parameters Optimization 

The importance of solving the problem of the cascade’s basic characteristics 

definition can be seen from the following considerations. Let designed axial 

turbine stage blades at a predetermined height. Under certain parameters before 
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and behind the stage is usually determined the number of blades and profile 

chords so that with an energy loss minimum satisfy strength and vibration 

requirements. The simplest solution is to select the "optimal" t/b ratio using 

known empirical relationships and determining the chords provide reliable 

operation. Upon closer examination the situation is not so simple: first, the 

optimum ratio t/b is determined by many factors (the relative thickness of the 

edge, the Reynolds number and the relative roughness of the surface, relative 

height and others); secondly, the permissible loss and the vibration 

characteristics depend on the influence of the previous cascade; third, the stage 

design can be carried out both from the set of standard profiles or suggest 

subsequent entirely new cascades profiling. Consideration of these 

circumstances makes the task of optimization of the basic cascade parameters 

quite challenging and promising in terms of using hidden in complicated 

situations reserves to increase efficiency and reduce consumption of materials in 

the created turbomachine design. 

The calculation of the kinetic energy loss on the basis of empirical 

relationships has repeatedly been considered and, as experience shows, in the 

form set out in Chapter 2, is a reliable tool to assess the various components of 

the losses in the cascade. Calculation of the geometric characteristics of the 

profiles is carried out using a dependency suitable for working and nozzle 

profiles, including an elongated front portion. The stresses in the diaphragms, 

nozzle and rotor blades, as well as restrictions on the vibrational reliability 

calculated by the well-known and, as far as possible, the exact dependence. 

When optimizing an isolated cascade the following problem statements 

species are considered. 
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I. Profile presentation method 

I.1. Standard profile. The geometric characteristics are determined by the 

tabular data and restated for a specific profile stagger in the cascade, which 

provides the desired output stream angle at a known relative pitch. 

I.2. "Macromodel". The form of the profile is not known beforehand, but its 

defining geometrical characteristics can be estimated by empirical dependence 

of the type [26]. 

I.3. Profiling. In addition to the previous statement can be built demo profile, 

designed by a faster way. It is possible geometrical and strength characteristics 

evaluation on its configuration. 

II. Variable parameters. 

II.1. Optimization of chord when t/b = const. 

II.2. Optimization of t/b when b = const. 

II.3. The chord and the relative pitch optimization. In constructing the 

cascade of the standard profiles the profiles chord selection is in sequential 

enumeration of profiles of this type, but of different size [20, 33]. 

III. Boundary conditions. 

III.1. Geometric, kinematic and gas-dynamic parameters in the first 

approximation are given from stage thermal calculation. 

III.2. Cascade optimization process is conducted directly to the stage 

(multistage flow path) thermal calculation and optimization. In this case, the 

design of the cascade is embedded in an iterative process instead of the 

verifying energy losses in cascades, as is usually done. 

Optimization is made by LP- search, and where this is not possible, brute 

force at defined ranges of variable parameters and the number of sampling 
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points. The calculation is carried out in designer’s dialogue with a computer, 

which significantly reduces the time to find an acceptable solution. 

5.2  Profiles Cascades Shaping Methods 

The resulting thermal calculations of optimal geometry and gas-dynamic 

parameters of the working fluid at the inlet and outlet of the blade row let you 

go to the next stage of optimization of the turbine flow path – the blade design. 

The solution of the latter problem, in turn, can be divided into two stages: the 

creation of planar profiles cascades and their reciprocal linkage also known as 

stacking [25]. 

The optimal profiling problem formulated as follows: to design optimal from 

the standpoint of minimum aerodynamic losses profiles cascade with desired 

geometrical characteristics, provides necessary outlet flow parameters and 

satisfying the requirements of strength and processability. 

To optimize the cascade’s profile shape profiling algorithm is needed, 

satisfying contradictory requirements of performance, reliability, clarity and 

high profiles quality. 

Earlier, considerable effort has been expended to develop such algorithms 

[25]. Analyzing the results of these studies, the following conclusions may be 

done. First, great importance is the right choice of a class of basic curves, of 

which profiles build (which may be straight line segments and arcs, lemniscate, 

power polynomial, Bezier curves, etc.), which primarily determines the 

reliability and visibility of solutions. The quality of the obtained profiles 

associated with the favorable course of the curvature along the contours, the 

choice of which is carried out using the criteria of "dominant curvature", 

minimum of maximum curvature, and other techniques. 
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First, consider the method of profiles constructing with power polynomials 

[15, 34]. The presentation will be carried out in relation to the rotor blade. 

5.2.1  Turbine Profiles Building Using Power Polynomials 

Initial data for the profile construction. Analysis of the thermal calculation 

results (entry 
1  and exit 

2  angles, values of flow velocities 
1W  and 

2W ), and 

the requirements of durability and processability lead to the following initial 

profiling data (Fig. 5.1): 1g  – constructive entry angle; f – cross-sectional area; 

b – chord; t – cascade pitch. Optimal relative pitch of the cascade can be 

determined beforehand on the recommendations discussed in [25];  

a – inter-blade channel throat; 
1  – entry wedge angle; 1r  – the radius of the 

leading edge rounding; 
2r  – the radius of the trailing edge rounding;  

2  – exit wedge angle; 
s  – profile stagger angle; 2g  – constructive exit 

angle;  – unguided turning angle. 
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Figure 5.1  The design parameters of the profile cascade. 

Of the last six parameters three (
1r ,

2r ,
2 ) are determined by calculation, the 

remaining three (
s , 2g , ) can also be determined in the first approximation 

by the empirical formula [25]. In further at constructor’s option last three 
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parameters or part of them, may be maintained constant during the profiling, or 

changed, as variable parameters. As a first approximation for the profile stagger 

angle 
s  the next relationship can be recommended: 

   
2

1 2 1 213.59 0.682 0.0028s g g g g         . 

Profile is built in a Cartesian coordinate system. Coordinates of the circle 

center of input and output edges, as is easily seen, is given by (Fig. 5.1): 
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 (5.1) 

The coupling coordinates of the edges circles with convex and concave sides 

of the profile 
1 2 1 2, , ,C C K K  and their derivatives at these points are defined as 

follows: 
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, (5.2) 
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 (5.3) 

Where 1 1 1 1 1 12; 2;C g K g          

2 2 2 2 2 22; 2.C g K g          

The wedge angle of the leading edge 
1  in first approximation can be 

determined using the guidelines [25]: 

 max 1
1

2
2.5

C r

b



 , (5.4) 

Where 
max 1.3C f b . 

The trailing edge wedge angle 
2  can be set by the designer or determined 

by the expression: 

 1
2

1

0.14

0.2
K








. (5.5) 

In the formulas (5.4), (5.5) the angles are in radians. The K  value is often 

taken as equal to 1. It can influence the position of the center of gravity of the 

profile. In the process of profile building angle 1  specified from the 

conservation of a given area. 

Preserving the value of the throat a, for point D we have: 



◆◇     Chapter 5  Optimal Cascades Profiling     ◇◆ 
 

http://www.sciencepublishinggroup.com 175 

 

   

   

 

2

2

0 2 2

0 2 2

2

cos ;

sin ;

ctg .

D C

D C

D C

x x a r

y y a r t

y

 

 

 

    


     


  

 (5.6) 

In the construction of the profile convex and concave parts must first achieve 

coupling of describing their curves with circumferential edges, while the 

profile’s convex part with the circumference of the throat at the point D. This 

means that these curves must satisfy the boundary conditions which are defined 

by formulas (5.2), (5.6) to the convex and (5.3) for the concave portions of the 

profile. 

As for the convex part the number of these conditions is six, and for the 

concave – four, in order to have an opportunity to widely vary the outline 

profile to produce a minimum loss, the convex portion of the profile should be 

described by a polynomial of higher than 5-th, and the concave portion – than  

3-d degree. 

Let the order of the polynomial is n. In this case, the question of choosing the 

correct n-5 boundary conditions for the convex portion of the profile and n-3 

boundary conditions for the concave part. As such one can take, for example, 

the high-order derivatives (second and higher) in the points 
2C  and 

2K . Not 

stopping until the solution of this problem, assume that the boundary conditions 

are somehow chosen. 

Due to the fact that the number of points at which the boundary conditions 

are given, may be different for the convex portion and the concave profile (as 

mentioned above), for generality, we consider the task of determining the 

coefficients of the polynomial in the case of setting the boundary conditions in 

any number of points. 

This problem is formulated as follows: 
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required to find the coefficients of the polynomial 

 
2 3
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n
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satisfying in the k points to n + 1 boundary condition 

at 
1x x : 
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Differentiating (5.7)       1 2max 1 , 1 , , 1kk k k     times by x. We 

assume in (5.7) and in the first 1k  , obtained by differentiating (5.7), the 

equations 
1x x , then (5.7) in the first and 

2 1k   equations 
2x x , etc. until 

you go through all the k points at which the boundary conditions are given. 

Every time we get a system of algebraic equations, which for the m-th point can 

be written as: 
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 (5.8) 

In the matrix form, this system can be presented as 

C A B  , 

where C – matrix of coefficients (5.8); A – unknown parameters column 

0 1 2, , , , na a a a ; B – right-hand sides of equations (5.8) column. 
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It is easy to see the elements of the matrix C, and the right-hand part column 

B may be determined by the following formulas: 
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 (5.9) 

Now, if the index m in (5.8) will run from 1 to k, we arrive at a system of 

linear algebraic equations of order n + 1 relatively of unknowns 

0 1 2, , , , na a a a , the elements of the coefficient matrix and the right sides of the 

column which are determined by formulas (5.9). Solving this system of linear 

equations, we will determine the coefficients of the polynomial (5.7) separately 

for convex and concave profile parts. 

The area is calculated using the difference between the integrals of the curves 

describing the convex and concave portion of the profile. Be aligned with a 

given area can be varying wedge angle of the leading edge 
1 , repeating at the 

same time building a profile with the formulas (5.2), (5.3). 

The developed method of turbine profiles design allows the construction of 

an oblique cut with straight section. Such profiles can be used for supersonic 

expiration and work well in conditions other than nominal. 

5.2.2  Profiles Building Using Besier Curves 

A more simple and clear way to build the base curve is a Bezier curve (which 

is especially convenient for interactive construction of complex curves), but to 

automate profiling with its help some special measures should be taken. There 
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is no doubt also the fact that that the minimum of maximum curvature is a 

prerequisite for high aerodynamic qualities of turbine profiles cascades. In 

many cases, probably this criterion prevails over the condition of the absence of 

curvature jumps, as evidenced by still competitive CKTI profiles [33], designed 

from arcs and line segments. 

Based on these considerations, we will build a profile consisting of two 

circles describing the input and output edges and three Bezier curves, one of 

which forms the pressure side, and the other two – convex part, respectively, 

from the trailing edge to the throat and from the throat to the leading edge. 

Bezier curve that passes through two given end points and having at these 

points specified derivatives, will be called the base curve (BC). 

The simplest base curve satisfying the above requirements, a Bezier curve, 

based on the polygon consisting of two segments passing through the given 

points with a given slope (Fig. 5.2). It is not difficult to assume that the use of 

the support polygon of the two segments gives BC, having a very large 

maximum curvature. In addition, when the angle between segments tends to be 

zero, the maximum curvature increases indefinitely. 

  

Figure 5.2  Construction of Bezier curve 

by 2 points. 

Figure 5.3  Construction of Bezier curve 

in three basic segments. 

The next (and decisive) step to improving the base curve is the addition of 

one more segment, intersecting the first two (Fig. 5.3). 
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We introduce relationship 

1 3 2 4
;

1 0 2 0
f g

 
 

 
. 

The course of the base curve generated by polygon 1-3-4-2 much smoother. 

Furthermore, it is obvious that there must be optimum values of the parameters   

f and g. Indeed, at f and g, aspiring to unity, we have the case of two basic 

segments and a very large curvature in the central part of the curve, while f, and 

g, tending to zero, greatly increasing curvature at points 1 and 2. 

A disadvantage of the third order base curve construction is the need to 

determine the optimal combination of parameters f, g, which greatly slowed the 

process of the profile design. Fortunately, the coefficients can be calculated 

only once and tabulated for different combinations of angles (Table 5.1). Since 

the optimum base curves do not depend on the polygon orientation or the size, 

the calculations can be made for the polygon, whose base is the unit interval, 

which lies on the Ox axis. In addition, due to the obvious condition 

   1 2 2 1, ,opt optf g    , 

it is enough to store the data for only one optimal ratio. If you have a table of 

dependencies, the basic curves of sufficient quality are built almost instantly. 

Table 5.1  Optimal f and g coefficients for different angles. 

10 20 30 40 50 60 70 80 Angles 

0.66 0.60 0.70 0.76 0.80 0.80 0.78 0.75 10 

0.95 0.65 0.45 0.50 0.54 0.56 0.56 0.55 20 

0.95 0.95 0.62 0.85 0.89 0.91 0.92 0.91 30 

0.95 0.95 0.40 0.58 0.69 0.72 0.72 0.69 40 

0.95 0.95 0.40 0.50 0.53 0.57 0.59 0.57 50 

0.95 0.95 0.30 0.40 0.45 0.48 0.49 0.46 60 

0.95 0.95 0.20 0.37 0.40 0.38 0.37 0.36 70 

0.95 0.35 0.25 0.31 0.33 0.31 0.27 0.20 80 
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Profile is constructed from two circles that form the input and output edges, 

one of BC, which describes the pressure side, and the two BCs, describing the 

suction side. In this way, initial profiling parameters are listed in Section 5.2.1 

(Fig. 5.1). 

This information is sufficient to build the support polygons of the profile 

sections. Formulas for determining the coordinates of the corresponding points 

and angles do not differ from those given in the previous section. An algorithm 

for constructing the profile is very simple, but it has a major disadvantage: in 

the point of the throat, where two base curves are joined, it is possible 

discontinuity of curvature, which may lead to local deformation of profile 

velocity, and a sharp increase in the friction loss. There is a simple way to 

smooth BC docking at the throat. It lies in the selection of the unguided turning 

angle to match the curvature of parts at the throat point. Because of the high 

curvature sensitivity of the unguided turning angle, the variation turns minor. 

Determination of opt  is carried out by solving the equation 

   1 2D D     

by secant method. 

Elimination of the curvature jump in the throat requires only a few profile 

evolutions and a decision is reached very quickly. Built in such a way will be 

called the basic profile (BP). After a slight modification the algorithm also 

allows to construct suitable profiles with elongated front part. 

It should be borne in mind that the BP is not yet the final product, it is only a 

semifinished product intended for optimization of all the others, except for the 

initial, data. This optimization can be performed according to different criteria. 

In the process of BP constructing assumed the specified parameters with the 

exception of the unguided turning angle, which was chosen in such a way as to 
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eliminate the curvature jump at the throat. The remaining ten parameters can be 

varied to optimize a chosen cascade optimality criterion. 

In general, the problem of optimal design of a flat cascade can be written as: 

  min , XF X X . (5.10) 

Vector of variable parameters X should in some way describe the shape of the 

profile. Criterion F(X) is a functional on X. Restrictions on the range of 

admissible values of the vector X associated with strength and technological 

requirements cascade imposed on, which are, in particular, the shape and 

thickness of the input and output edges. Because of the sufficient simplicity of 

accepted method for calculating the tensile and bending stress in the blade 

section, they can be defined directly in the process of the profile shape 

optimization. However, we will stick to a different approach, considering 

approximately known basic cascade dimensions (chord, relative pitch, etc.) on 

the basis of the calculation described in section 5.1. 

Specifically, a vector of variable parameters includes the following 

characteristics which influence the configuration of the profile that is based on 

the procedure described in the previous section: 

 profile stagger angle; 

 relative pitch; 

 geometrical exit angle; 

 the radius of the leading edge; 

 wedge angle of the leading edge; 

 wedge angle of the trailing edge. 

Restrictions on the range of the parameter is written in the simplest form: 

 
min maxX X X  . (5.11) 
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If you wish to fix a component 
iX  we believe 

min maxi iX X . 

The most important point in the cascade optimization is the correct criterion 

of quality selection, which generally represents the minimum total loss of 

kinetic energy in the cascade taking into account the relative time of its 

operation at different flow regimes in a given stage of the turbine. In connection 

with this problem distinguish multi-mode and single-mode optimization 

solution requires the calculation of cascade flow and constituting losses therein, 

respectively, at set of modes or in one of them. 

As shown by previous studies, in some cases, an alternative criterion of 

aerodynamic quality can be geometric criterion of the profile smoothness. One 

could even argue that this observation even more relevant to a multi-mode 

optimization, than single-mode. The original method was developed in relation 

to the profiles submitted by power polynomials. 

5.3  Optimization of Geometric Quality Criteria 

When used for the formation of the profile contour of polynomials of degree 

n (n > 5 for the convex part of the profile, and n > 3 for the concave part) the 

question arises about the correct choice of the missing n–5 (or n–3) boundary 

conditions which must be selected on the basis of the requirements of 

aerodynamic profile perfection. 

One of the requirements of building the turbine profiles with good 

aerodynamic qualities is a gradually changing curvature along the outline of the 

profile [25]. Unfortunately, the question concerning the nature of the change of 

curvature along the profile’s surface, is currently not fully understood. 

As a geometric criterion for smooth change of curvature in the lowest range 

of change in the absence of kinks on the profile, you can take the value of the 

maximum curvature on the profile contour in the range 
2 1
,C Cx x 

   for the 
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convex and for 
2 1
,K Kx x 

   the concave parts, by selecting the minimum of all 

possible values at the profile designs with the accepted parameters and 

restrictions. The requirement for the absence of curvature jumps in the 

description of the profile contour by power polynomials automatically fulfilled 

as all the derivatives of the polynomial are continuous functions. Agree to 

consider determined based on the geometric quality criterion, the missing 

boundary conditions in the form of derivatives of high orders in points 
2C , and 

2K  components of a vector Y


. For the concave part of the profile vector of 

varied parameters Y  is as follows: 

  
2 2 2

3
, , ,

n

K K K KY y y y
  . 

For the convex part to the derivatives of high orders added geometrical exit 

angle 2g  and at constructor’s option unguided turning angle : 

  
2 2 2

5

2, , , , ,
n

C C C C gY y y y  
  . 

To construct the optimal profile is taken such a vector 
optY , which provides 

the minimum of the functional 

    maxF Y k , (5.12) 

wherein k – the curvature of the profile, and the maximum is searched for in the 

range 
2 1
,C Cx x 

   on the convex portion of the profile and 
2 1
,K Kx x 

   – on the 

concave part of the profile using one of the one-dimensional search methods. 

Formulated the problem of minimizing the functional (5.12) can be solved by 

the methods of nonlinear programming. In this case, a very successful was a 

flexible polyhedron climbing algorithm. 
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An algorithm for an optimal profile constructing using the geometric quality 

criterion is as follows: 

1. For the given values of the inlet and outlet edge radii 
1r  and 

2r , chord b, 

received or estimated using particular one of the recommended dependencies 

profile’s stagger angle 
s , the coordinates of the centers of inlet and outlet 

edges circles calculated using (5.1). 

2. Set the leading edge wedge angle 
1 . 

3. Select the initial approximation for 2g , , by which and adopted value of 

2  by the formulas (5.2), (5.6) the coordinates of the points 
1 2,C C  and D are 

determined, as well as their first derivatives. 

4. Determine the coefficients of the polynomial (5.7), which describes the 

convex portion of the profile. Wherein high order derivatives  

2 2 2

5
, , ,

n

C C Cy y y
   

are set as the initial approximation in the first step and refined during the 

optimization. 

5. By using one of the methods of one-dimensional search the maximum 

curvature max k  objective function value is found. Next on the program for 

searching the extremes minimum of the functional sought 

  maxF Y k . 

Minimum of the functional corresponds to the optimal value of the vector of 

varied parameters 
  

2 2 2

5

2, , , , ,
opt

n

C C C C gY y y y  
   by which at this stage of 

the profile building the coefficients of the polynomial (5.7) describing the 

profile’s convex part are determined. 
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6. From formulas (5.3) calculates the coordinates of the points 
1 2,K K , and 

their first derivatives. Varying the vector 
  

2 2 2

3
, , ,

n

K K K KY y y y
   by the 

means of optimization program a value 
optKY


 and the coefficients of the 

polynomial that describes the profile concave portion are searched. 

7. Determine the area of the profile  1f   and the discrepancy 

 1F f f  . Setting a new 
1  value, profiling process is performed again 

from step 3. As stated above, the minimum residual is achieved by using the 

"golden section" one-dimensional search of extremum procedure. 

It was also developed somewhat different algorithm for constructing an 

optimal profile of the geometric quality criteria. 

The main stages of the algorithm are as follows: 

1. Setting a constructive exit angle 2 arcsing a t  , define as a first 

approximation, the profile stagger angle in the cascade by the recommended [25] 

formula 

 1 2tg 0.2 0.8s g g     , 

and the coordinates of the centers of inlet and outlet edges circles 
1O  and 

2O , 

by using the specified values of the radii 
1r  and 

2r , the chord b. 

2. Calculating from the formula (5.4), (5.5) the edges wedge angles 
1  and 

2 , determine the coordinates of the points of contact 
1C  and 

2C  on the convex 

side, 
1K  and 

2K  on the concave part of the profile, as well as the first 

derivatives in them. 
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3. We determine the coefficients of the polynomial (5.7), which describes the 

convex portion of the profile. The derivatives of higher orders 

 

2 2 2

3
, , , ,

n

C C Cy y y
   necessary to determine the coefficients, are set as the initial 

approximation in the first step and refined during the optimization. 

4. Using the method of one-dimensional search of extremum – the "golden 

section" method in the range 
2 1
,C Cx x  the value of maximum curvature max k  

is found, the minimum of which is determined by the Nelder-Mead nonlinear 

programming method, changing the vector of varied parameters 

  
2 2 2

3
, , ,

n

C C C CY y y y
  . 

5. Constructing the convex portion of the profile, drop the perpendicular from 

the center of the circle 
2O  of the neighboring cascade profile trailing edge and 

determine the size of inter-blade channel throat 
2 2O D r . Having the difference 

between the obtained value and the predetermined throat 

   2
2

21
D O

D

D

x x
a y a r

y



   


, 

refine by the recommendations [25], the profile stall angle s  and constructive 

exit angle 2g : 

   2 2

tg
tg 1 ; 1

1 tg

si si
s g gi si

si si

i i
 

   
 


    


, 

where 

 
2

2
22

si

D O D

a

x x y


 

 

. 
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The process of the profile convex portion constructing continue from step 1 

until the throat is not held with the desired accuracy. 

1. Varying the vector 
  

2 2 2

3
, , ,

n

K K K KY y y y
  , using optimization in the 

range 
2 1
,K Kx x  the values of 

optKY  are sought as well as the coefficients of the 

polynomial, describing the concave part of the profile (points 3, 4). 

2. Determined the profile area  1f   and the discrepancy  1F f f  . 

Given a new value 
1  and profiling process is carried out again from step 2. 

Minimization of F residual is achieved by using an one-dimensional search of 

extreme. 

3. Using one of possible methods, profile velocity distribution and boundary 

layer are calculated. Profile quality control is carried out by the nature of the 

velocity distribution around its contours, the value of profile loss and the 

boundary layer separation criteria. 

The calculation of the velocity distribution around a plane cascade profile and 

loss coefficients made by sequentially the following tasks: calculation of 

potential ideal incompressible fluid flow around a flat cascade; approximate 

calculation of the compressibility of the working fluid; the boundary layer 

calculation and loss factor determination. 

Methods for potential flow of an incompressible ideal fluid calculation in the 

plane cascade can be divided into methods based on conformal mapping of the 

flow domain and methods of solving tasks given to integral equations [8, 22]. 

Considering the profile loss ratio pr  as the sum of the friction fr  and edge 

losses 
e  coefficients using proposed in [8] approximate formula for 

determining the value of the expression pr  can be written as: 
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** **

2

2 2

2
2 0.1

sin sin

ss ps

pr

r

t t

 


 


  , (5.12) 

wherein ** **,ss ps   – the momentum thickness on the convex (suction side) and 

the concave (pressure side) portions of profile. 

The calculation of the boundary layer can be produced by known methods of 

boundary layer theory [22]. There is reason to believe the boundary layer in real 

turbomachinery cascades fully turbulent. At least the treatment the boundary 

layer as turbulence do not gives low loss coefficient values in the cascades. 

Before values of Mach numbers M < 0.5, calculation of the boundary layer on a 

single cascade profile can produce satisfactory accuracy as an incompressible 

fluid [22]. As a possible formulas for the momentum thickness calculation can 

take the expression obtained in the solution of the turbulent boundary layer by 

L.G. Loytsyanskiy method 

 

0.85

** 0.15 3.55 4

2

0

0.0159Re

S

w w dS  
 

  
 
 , (5.14) 

where Re – Reynolds number; 
2w  – cascade output velocity; w(S) – the profile 

countour velocity distribution function. 

The integral in (5.14) is determined by a numerical method. Determined with 

the help of (5.14) the ** **,ss ps   values, and substituting them into (5.12), we will 

find the profile loss ratio. 

5.4  Minimum Profile Loss Optimization 

A more rigorous formulation of creating an optimal cascade profile problem 

that provides design parameters of the flow at the exit and meet the 
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requirements of strength and workability, is the problem of profiling, which 

objective function is the profile (or even better – integral) losses. 

As mentioned above, the profile loss ratio can be presented as the sum of the 

friction loss coefficients of the profile fr  and edge loss coefficient 
e . 

Given that the ratio of the edge losses associated with the finite thickness of 

trailing edges, the value of which is predetermined and is practically independent 

of the profile configuration, the objective function can be assumed as [8] 

 

** **

2

2
sin

ss ps

fr
t

 





 . (5.15) 

In terms of flow profile, you must set a limit, excluding the boundary layer 

separation. Unseparated flow conditions according to Buri criterion can be 

written as [22]: 

  
1**

**Re m
dw

B
w dS

 

  , (5.16) 

Where 
** **Re Re b . 

The constants B and m can be taken equal to: B = 0.013…0.020, m = 6. 

The task is set of determining the coefficients of the polynomials (5.7) 

for a description of the convex and concave profile with given geometric, 

strength and processability parameters so as to reach the minimum of the 

functional (5.15) and satisfy the constraints (5.16). 

Formulated the optimal profiling problem is essentially non-linear with 

inequality constraints and mathematically formulated as follows: 

    min , 0f Y g Y  , (5.17) 
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where 
    

2 2 2 2 2 2

5 3

2 1, , , , , , , , , , ,
n n

s g g C C C K K KY y y y y y y   
     vector of 

varied parameters objective function, whose role in the problem plays an 

equation for the coefficient of friction (5.12);  g Y  – constraint, which on the 

basis of Buri separation criterion (5.14), is defined as follows: 

    max ig Y g Y ; (5.18) 

 
, at 0;

0, at 0,

i i

i

i

G G
g Y

G


 


 

where 

  
**1

**Re im
i

ii

dw
G B

w dS

  
   

 
, (5.19) 

i = 0, 1, ..., 2n (2n – the number of points on the profile contour). 

Applying to the problem solution method the penalty functions method [3], 

we reduce the problem of finding the extremum in the presence of constraints to 

the problem without restriction. Form the generalized functional *I  

  *

frI g Y   , (5.20) 

where   – penalty coefficient. 

For the unconstrained minimization of the functional (5.20) Nelder and Mead 

algorithm was used [3]. 

An algorithm for constructing an optimal profile of the minimum profile loss 

is as follows: 

1. As the initial data for profiling on the basis of thermal calculation and the 

conditions of durability and adaptability the quantities are introduced:  
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a – throat inter-blade channel; b – chord; t – cascade step; f – profile square;  

1r  and 
2r  – input and output edges radii; 

2  – trailing edge wedge angle. 

2. An initial approximation for the leading edge wedge angle 1 , the stagger 

angle of the profile s , geometric (constructive) entry 1g  and exit 2g  angles, 

unguided turning angle , derivatives of higher orders 

   

2 2 2 2 2 2

5 3
, , , , , , ,

n n

C C C K K Ky y y y y y
    . 

3. Determines the coordinates of the points 
1 2 1 2, , , ,C C D K K , and their first 

derivatives. 

4. Sought the coefficients of polynomials describing the concave and convex 

portion of the profile according to the procedure set out in section 5.1. 

5. The profile area determined and, using one of the one-dimensional search 

methods, varying angle 
1 , a minimum of residual  1F f f   is found. 

The process of profiling is carried out from step 2. 

6. Calculate the profile velocity distribution, as well as the coefficient of 

friction fr  by (5.15) and the 
iG  value by (5.19). 

7. We call the routine of optimization for finding the minimum of the 

functional (5.20), each time making the profile area fit before the calculation of 

the objective function. A minimum of the functional (5.20) corresponds to the 

optimum value of the vector of variable parameters 

    
2 2 2 2 2 2

5 3

2 1, , , , , , , , , , ,
n n

opt s g g C C C K K KY y y y y y y   
    . 

8. The optimal profile construction is made, satisfying the strength, 

geometrical and technological constraints, and provides a minimum profile loss 

while maintaining the unseparated flow. By the designer’s wish optimization 
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may also be performed using the parameter t/b, and the trailing edge wedge 

angle 
2 . 

5.5  Optimal Profiling Examples 

The created profiling algorithms have allowed to design a series of profiles of 

turbine cascades. 

As a starting (1O) was taken the standard profile P2 with a high aerodynamic 

quality. Wherein were accepted such flow conditions that ensure the smallest 

possible profile P2 (1O) losses: 0.722t t b  , 
b  = 7626, 

1  = 2930. 

Retaining the basic, necessary for the machine profiling raw data 

 1 2 1, , , , , , ,bt b a f r r   with the help of the developed algorithms were 

obtained new profiles: 1MMC (for the geometric quality criteria – the minimum 

of maximum curvature) and 1MPL (the minimum of profile loss). 

From technological considerations subsequently profile 1MMC contour was 

approximated by the radii (Fig. 5.4, 5.5, Table 5.2). Fig. 5.6–5.8 shows the 

distribution of the velocity and the parameter B (the Buri boundary layer 

separation criterion) along the contours of the original and newly created profiles. 

The calculated profile loss pr  values correspondingly are 3.35, 3.16 and 

3.00%. Attention is drawn to the different law of the parameter B variation 

along the profiles contours. Apparently, the possibility of the boundary layer 

separation, or the intensity of its thickening (which leads to increased losses) 

must be judged not only by the maximum value of the parameter B, which 

(usually) achieved at cascade’s oblique cut, but also the character of its change 

within the channel prior bevel, particularly on the convex side of the profile. 
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For comparative testing of profiles 1O, 1MMC and 1MPL were chosen 

conditions of the original flow profile P2 (1O) which provide the smallest 

possible losses: 0.722t t b  , 
b  = 7626. 

All nominal dimensions of the experimental blades and cascades of 

considered profiles adopted respectively the same, namely a chord b = 42 mm; 

length of blade l = 120 mm; pitch t = 30.32 mm; channel throat a = 10.85 mm; 

the thickness of the trailing edge  = 0.66 mm. The stagger angles for the newly 

designed profiles 1MMK and 1MPP equaled stagger angle of the source profile 

1O. 

 

b  7626 
Bilateral 

points 

Coordinates, mm 
Bilateral 

points 

Coordinates, mm 

b, 

mm 
420,0 x y x y 

in 6,66 1 0,3334 4,7837 6 377,3304 174,9175 

out 1,5910–2 2 64,5584 118,8692 7 404,2919 104,6999 

C, mm 153,6276 3 128,4423 196,9085 8 419,9 12,7715 

t, mm 303,240 4 204,5439 244,4601 9 399,1575 4,6840 

f, sm2 479,962 5 324,6853 230,7689 10 6,0428 1,3995 

Figure 5.4  Profile 1MMC. 
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Table 5.2  1MMC profile parameters in the radiusographic form. 

Arcs 

Radii and centers coordinates 

of arcs, mm 
Arcs 

Radii and centers coordinates 

of arcs, mm 

R x y  R x y 

1-2 1057,0 951,6247 455,8897 6-7 277,5 134,1478 41,244 

2-3 455,0 446,4076 128,5415 7-8 750,0 325,8325 66,7955 

3-4 210,0 275,1959 46,7023 8-9 11,55 408,4469 11,5460 

4-5 137,7 250,8724 114,7901 9-10 242,99 203,8004 139,8127 

5-6 155,0 241,50 100,2534 10-1 3,33 3,33 3,33 

 

b  7626  
2OX , mm 3,33 

b, mm 420,0  
2OY , mm 3,33 

out, mm 6,66  2r , mm 3,33 

in, mm 1,5910–2  
1OX , mm 408,451 

C, mm 164  
1OY , mm 11,55 

t, mm 303,240  1r , mm 11,55 

f, sm2 479,0    

Figure 5.5  Profile 1MPL. 
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Figure 5.6  Distribution of velocity and 

parameter B along the 1MMC profile 

contour. Calculated profile loss coefficient 

pr  = 3.16%. 

Figure 5.7  Distribution of velocity and 

Buri separation criteria B along the 

1MPL profile contour. Calculated profile 

loss coefficient 
pr  = 3.35%. 

 

Figure 5.8  Distribution of velocity and parameter B along the 1MPL profile  

contour. Calculated profile loss coefficient 
pr  = 3.0%. 

In the blades manufacture the profile was controlled by the working patterns. 

The template fit appears on the projector using the drawing profile contour      

10 times increased relatively to the blade profile. When fit the profile by 

template contour clearance allowed not more than 0.04 mm. It should be noted 

that the difference in the contours of the most similar profiles 1O and 1MMC 

reaches 0.6 mm, i.e. an order of magnitude greater of the blades manufacture 

tolerance. Particular attention was paid to ensure a predetermined trailing edge 
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thickness. The admission to the size of the throat when building cascades was 

0.03 mm. Effective angle downstream was 2 arcsine a t    2055. 

The aim of the tests was to obtain comparative data on the profile losses 

factors pr  and exit flow angles 
2  in the subsonic region, at the range of Mach 

numbers 0.3…0.65, and different inlet flow angles 
1 . 

The comparability of the experimental results was ensured by making the 

blades and cascades in the same manner with the same requirements for 

precision and surface finish; cascade tests one the same test rig, using the same 

instrumentation and the measured data processing methods. 

The main test was preceded by methodological tests. On expiration mode of 

Mach 
2M T

 = 0.46, the measurements were carried out along the front of the 

cascade at different distances from the plane of output edges and in the three 

sections of the height of the blades. The values of certain kinetic energy loss 

factor pr  is calculated for the measurement intervals along the cascade front 

multiple of two, three and four steps of the blades. The results of such averages 

practically coincided, indicating that careful manufacture of blades and high 

quality cascades assembly. 

As a result of preliminary tests it was found that the averaged energy losses 

in the flow behind cascade will stabilize at a distance from the 0.25b of the 

trailing edges. Thus for a layer thickness of 20% of the blades height, 

symmetrical about their middle, the flow is very close to the flat. 

Final testing data of three experimental cascades were obtained by 

measurements on the middle section of the height of the blades at a distance 

equal to 0.285b from the trailing edges in the three-step interval. 
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Fig. 5.9 shows the experimental dependences of the cascade profile losses 

versus inlet flow angle 1 in the range of change from 26 to 41 at different 

Mach numbers ranging from 0.45 to 0.68, which corresponds to Reynolds 

numbers of Re = 3.9∙10
5 
to Re = 5.75∙10

5
. In these intervals profile losses curves 

of cascade made up of the original profile 1O, are located above the profile 

losses curve of newly designed cascade 1MMC. Both profiles have minimum 

profile loss at inlet flow angle 1  = 35. The magnitude of profile loss in the 

second cascade of 0.3…0.4% less than the first substantially throughout the 

whole range of variation of the input flow angle 1  in the specified range of the 

Mach number values. 

Wherein loss in each of the cascades 1O and 1MMC increasing against the 

minimum value of 0.8% in the case of 5 deviation of input flow from the 

optimum angle 1  = 35. The minimum profile losses amount of the cascade, 

composed from the newly designed blades 1MMC, optimized for geometric 

quality criterion, is 2.2 %. 

Profile losses of cascade, composed of profiles 1MPL, were slightly lower of 

cascades 1O and 1MMC at the nominal input flow angle 
1  = 2930. With the 

inlet flow angle decreasing, 1MPL profile advantage slightly increases. 

However, at the inlet flow angles 
1  > 30 profile 1MPL is worse than others. It 

should be emphasized that this profile losses factor curve vs input flow angle 
1  

in the investigated range of Mach numbers has a minimum at the angle            

1  = 2930, under which the profile 1MPL was designed. 

Fig. 5.10 shows the dependence of the angles downstream the cascades 
2  of 

the input flow angle 
1  at different Mach numbers. The newly designed cascade 

1MMC has the better match of the output flow angle 
2  with the effective 
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angle 2 arcsineff a t   value in the entire tested range. A similar pattern is 

observed for the cascade of 1MPL profiles within its region of advantages. 

 

Figure 5.9  Test results of cascades 1O (), 1MMC () and 1MPL ( ). 

Test conditions: b = 42 mm; t/b = 0.722; l/b = 2.857; a = 10.87 mm;   = 1.59∙10
–2

; 

b  = 7626. 

The another results of optimal profiling of cascades with converging and 

diffuser channels, as well as data of their experimental studies, can be found in 

[13]. 
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Figure 5.10  Test results of cascades 1O, 1MMC and 1MPL at different Mach numbers: 

 – 
2M 0.37T  ;  – 

2M 0.45T  ;  – 
2M 0.51T  ;   – .

2M 0.59T 
.
 

The results obtained to build the turbine cascades of a minimum profile loss 

authenticate the proposed statement of the profiling problem. Of course, for 

such problems more correct to take as an objective function the integral loss, 

what is the most naturally achieved involving computational aerodynamics 

models. 
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