| Peer-Reviewed

CO2 Valorization Reactions over Cu-Based Catalysts: Characterization and the Nature of Active Sites

Received: 25 May 2021    Accepted: 7 June 2021    Published: 21 June 2021
Views:       Downloads:
Abstract

Active sites are the individual reactors at the molecular scale distributed on the heterogeneous catalyst surface. To a large extent, they determine the catalytic performances and the reaction pathway of a reaction. Therefore, understanding the nature and structure of the actives sites is crucial to improve and develop novel, robust and practical catalysts. The wide application of state-of-the-art characterization techniques these years makes it possible to obtain crucial information about the active sites for some catalysts. The Cu-based catalysts are widely used for water gas shift (WGS) and methanol synthesis from syngas (CO + H2). Although having some technical issues in the direct conversion of CO2 into value-added products, they are still promising for this reaction to mitigate CO2 concentration in the atmosphere. In the last several years, intensive efforts have been made to study Cu-based catalysts, and substantial progress has been achieved in understanding their active sites and the reaction mechanism. This review discusses the structure and nature of active sites of Cu-based catalysts for CO2 valorization in thermo-, photo-, and electro-catalysis. We present the characterization results of different types of Cu-based catalysts applied in these processes, unravel their active sites and structures, and figure out the most important and critical factors that drive the reactions on the sites. The principle and applications of various characterization techniques are also briefly analyzed and compared. It is expected to provide fundamental insights and perspectives for designing highly active and efficient catalysts for CO2 conversion.

Published in American Journal of Chemical Engineering (Volume 9, Issue 3)
DOI 10.11648/j.ajche.20210903.12
Page(s) 53-78
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

CO2 Conversion, Catalyst Characterization, Cu-Based Catalyst, Reaction Mechanism

References
[1] Obama, B. (2017). The irreversible momentum of clean energy. Science, 355, 126.
[2] Durrani, J., Can catalysis save us from our CO2 problem?, Chemistry World, 2019.
[3] Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O'Hare, D., Zhong, Z. (2014). Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci, 7, 3478-3518.
[4] Wang, Q., Luo, J., Zhong, Z., Borgna, A. (2011). CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci, 4, 42-55.
[5] Kumaravel, V., Bartlett, J., Pillai, S. C. (2020). Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Letters, 5, 486-519.
[6] Ra, E. C., Kim, K. Y., Kim, E. H., Lee, H., An, K., Lee, J. S. (2020). Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catal, 10, 11318-11345.
[7] Jones, W. D. (2020). Carbon Capture and Conversion. J Am Chem Soc, 142, 4955-4957.
[8] Das, S., Pérez-Ramírez, J., Gong, J., Dewangan, N., Hidajat, K., Gates, B. C., Kawi, S. (2020). Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev, 49, 2937-3004.
[9] Artz, J., Müller, T. E., Thenert, K., Kleinekorte, J., Meys, R., Sternberg, A., Bardow, A., Leitner, W. (2018). Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev, 118, 434-504.
[10] Etim, U., Song, Y., Zhong, Z. (2020). Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol As a Renewable Energy Storage Media. Frontiers in Energy Research, 8.
[11] Deng, Y., Yeo, B. S. (2017). Characterization of Electrocatalytic Water Splitting and CO2 Reduction Reactions Using In Situ/Operando Raman Spectroscopy. ACS Catal, 7, 7873-7889.
[12] Rahbari, A., Ramdin, M., Van Den Broeke, L. J., Vlugt, T. J. (2018). Combined steam reforming of methane and formic acid to produce syngas with an adjustable H2: CO ratio. Ind Eng Chem Res, 57, 10663-10674.
[13] Ye, R.-P., Ding, J., Gong, W., Argyle, M. D., Zhong, Q., Wang, Y., Russell, C. K., Xu, Z., Russell, A. G., Li, Q. (2019). CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat Commun, 10, 1-15.
[14] Zhang, X., Zhang, G., Song, C., Guo, X. (2020). Catalytic Conversion of Carbon Dioxide to Methanol: Current Status and Future Perspective. Frontiers in Energy Research, 8, 413.
[15] Li, Z., Das, S., Hongmanorom, P., Dewangan, N., Wai, M. H., Kawi, S. (2018). Silica-based micro-and mesoporous catalysts for dry reforming of methane. Catal Sci Technol, 8, 2763-2778.
[16] Currie, R., Mottaghi-Tabar, S., Zhuang, Y., Simakov, D. S. (2019). Design of an Air-Cooled Sabatier Reactor for Thermocatalytic Hydrogenation of CO2: Experimental Proof-of-Concept and Model-Based Feasibility Analysis. Ind Eng Chem Res, 58, 12964-12980.
[17] Atsonios, K., Panopoulos, K. D., Kakaras, E. (2016). Thermocatalytic CO2 hydrogenation for methanol and ethanol production: Process improvements. Int J Hydrog Energy, 41, 792-806.
[18] De, S., Dokania, A., Ramirez, A., Gascon, J. (2020). Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization. ACS Catal, 10, 14147-14185.
[19] Simakov, D. S. A. Electrocatalytic Reduction of CO2, In: Renewable Synthetic Fuels and Chemicals from Carbon Dioxide: Fundamentals, Catalysis, Design Considerations and Technological Challenges, Springer International Publishing, Cham, 2017, pp. 27-42.
[20] Simakov, D. S. A. Thermocatalytic Conversion of CO2, Renewable Synthetic Fuels and Chemicals from Carbon Dioxide: Fundamentals, Catalysis, Design Considerations and Technological Challenges, Springer International Publishing, Cham, 2017, pp. 1-25.
[21] Simakov, D. S. A. Photocatalytic Reduction of CO2, Renewable Synthetic Fuels and Chemicals from Carbon Dioxide: Fundamentals, Catalysis, Design Considerations and Technological Challenges, Springer International Publishing, Cham, 2017, pp. 43-54.
[22] Kho, E. T., Tan, T. H., Lovell, E., Wong, R. J., Scott, J., Amal, R. (2017). A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy & Environment, 2, 204-217.
[23] Zhang, N., Long, R., Gao, C., Xiong, Y. (2018). Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Science China Materials, 61, 771-805.
[24] Chan, K., Tsai, C., Hansen, H. A., Nørskov, J. K. (2014). Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem, 6, 1899-1905.
[25] Xie, B., Wong, R. J., Tan, T. H., Higham, M., Gibson, E. K., Decarolis, D., Callison, J., Aguey-Zinsou, K.-F., Bowker, M., Catlow, C. R. A. (2020). Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nat Commun, 11, 1-11.
[26] Jiang, X., Nie, X., Guo, X., Song, C., Chen, J. G. (2020). Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem Rev.
[27] Kattel, S., Liu, P., Chen, J. G. (2017). Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc, 139, 9739-9754.
[28] Dang, S., Yang, H., Gao, P., Wang, H., Li, X., Wei, W., Sun, Y. (2019). A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal Today, 330, 61-75.
[29] Goeppert, A., Czaun, M., Jones, J.-P., Prakash, G. S., Olah, G. A. (2014). Recycling of carbon dioxide to methanol and derived products–closing the loop. Chem Soc Rev, 43, 7995-8048.
[30] Paulino, P., Salim, V., Resende, N. (2016). Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light. Appl Catal B: Environ, 185, 362-370.
[31] French, S., Sokol, A., Bromley, S., Catlow, C., Sherwood, P. (2003). Identification and characterization of active sites and their catalytic processes—the Cu/ZnO methanol catalyst. Top Catal, 24, 161-172.
[32] Yang, H., Zhang, C., Gao, P., Wang, H., Li, X., Zhong, L., Wei, W., Sun, Y. (2017). A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal Sci Technol, 7, 4580-4598.
[33] Natesakhawat, S., Lekse, J. W., Baltrus, J. P., Ohodnicki Jr, P. R., Howard, B. H., Deng, X., Matranga, C. (2012). Active sites and structure–activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal, 2, 1667-1676.
[34] Toyir, J., de la Piscina, P. R. r., Fierro, J. L. G., Homs, N. s. (2001). Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl Catal B: Environ, 34, 255-266.
[35] Toyir, J., de la Piscina, P. R. r., Fierro, J. L. G., Homs, N. s. (2001). Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter. Appl Catal B: Environ, 29, 207-215.
[36] Suh, Y.-W., Moon, S.-H., Rhee, H.-K. (2000). Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2. Catal Today, 63, 447-452.
[37] Dong, X., Li, F., Zhao, N., Xiao, F., Wang, J., Tan, Y. (2016). CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl Catal B: Environ, 191, 8-17.
[38] D’Alnoncourt, R. N., Xia, X., Strunk, J., Löffler, E., Hinrichsen, O., Muhler, M. (2006). The influence of strongly reducing conditions on strong metal–support interactions in Cu/ZnO catalysts used for methanol synthesis. Phys Chem Chem Phys, 8, 1525-1538.
[39] Günter, M. M., Ressler, T., Bems, B., Büscher, C., Genger, T., Hinrichsen, O., Muhler, M., Schlögl, R. (2001). Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catal Lett, 71, 37-44.
[40] Grunwaldt, J.-D., Molenbroek, A., Topsøe, N.-Y., Topsøe, H., Clausen, B. (2000). In situ investigations of structural changes in Cu/ZnO catalysts. J Catal, 194, 452-460.
[41] Li, W., Lu, P., Xu, D., Tao, K. (2018). CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid. Korean J Chem Eng, 35, 110-117.
[42] Ojelade, O. A., Zaman, S. F. (2019). A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study. Catal Surv Asia, 1-27.
[43] Kattel, S., Yan, B., Yang, Y., Chen, J. G., Liu, P. (2016). Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J Am Chem Soc, 138, 12440-12450.
[44] Huš, M., Dasireddy, V. D., Štefančič, N. S., Likozar, B. (2017). Mechanism, kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts. Appl Catal B: Environ, 207, 267-278.
[45] Huš, M., Kopač, D., Štefančič, N. S., Jurković, D. L., Dasireddy, V. D., Likozar, B. (2017). Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments. Catal Sci Technol, 7, 5900-5913.
[46] Karelovic, A., Galdames, G., Medina, J. C., Yévenes, C., Barra, Y., Jiménez, R. (2019). Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles. J Catal, 369, 415-426.
[47] Yang, B., Liu, C., Halder, A., Tyo, E. C., Martinson, A. B., Seifert, S. n., Zapol, P., Curtiss, L. A., Vajda, S. (2017). Copper cluster size effect in methanol synthesis from CO2. J Phy Chem C, 121, 10406-10412.
[48] Liu, C., Liu, P. (2015). Mechanistic study of methanol synthesis from CO2 and H2 on a modified model Mo6S8 cluster. ACS Catal, 5, 1004-1012.
[49] Grabow, L., Mavrikakis, M. (2011). Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal, 1, 365-384.
[50] Inoue, T., Fujishima, A., Konishi, S., Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277, 637-638.
[51] Indrakanti, V. P., Kubicki, J. D., Schobert, H. H. (2009). Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ Sci, 2, 745-758.
[52] Roy, S. C., Varghese, O. K., Paulose, M., Grimes, C. A. (2010). Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS nano, 4, 1259-1278.
[53] Dhakshinamoorthy, A., Navalon, S., Corma, A., Garcia, H. (2012). Photocatalytic CO2 reduction by TiO 2 and related titanium containing solids. Energy Environ Sci, 5, 9217-9233.
[54] Neaţu, Ş., Maciá-Agulló, J. A., Concepción, P., Garcia, H. (2014). Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. J Am Chem Soc, 136, 15969-15976.
[55] Wang, Y., He, D., Chen, H., Wang, D. (2019). Catalysts in electro-, photo-and photoelectrocatalytic CO2 reduction reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40, 117-149.
[56] Yamazaki, Y., Takeda, H., Ishitani, O. (2015). Photocatalytic reduction of CO2 using metal complexes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 106-137.
[57] Núñez, J., Víctor, A., Jana, P., Coronado, J. M., Serrano, D. P. (2013). Effect of copper on the performance of ZnO and ZnO1− xNx oxides as CO2 photoreduction catalysts. Catal Today, 209, 21-27.
[58] Khalil, M., Gunlazuardi, J., Ivandini, T. A., Umar, A. (2019). Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renewable and Sustainable Energy Reviews, 113, 109246.
[59] Long, R., Li, Y., Liu, Y., Chen, S., Zheng, X., Gao, C., He, C., Chen, N., Qi, Z., Song, L. (2017). Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J Am Chem Soc, 139, 4486-4492.
[60] An, X., Li, K., Tang, J. (2014). Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem, 7, 1086-1093.
[61] Li, H., Zhang, X., MacFarlane, D. R. (2015). Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Advanced Energy Materials, 5, 1401077.
[62] Nolan, M., Elliott, S. D. (2006). The p-type conduction mechanism in Cu 2 O: a first principles study. Phys Chem Chem Phys, 8, 5350-5358.
[63] Bi, F., Ehsan, M. F., Liu, W., He, T. (2015). Visible-Light Photocatalytic Conversion of Carbon Dioxide into Methane Using Cu2O/TiO2 Hollow Nanospheres. Chin J Chem, 33, 112-118.
[64] Gusain, R., Kumar, P., Sharma, O. P., Jain, S. L., Khatri, O. P. (2016). Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl Catal B: Environ, 181, 352-362.
[65] Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., Thimsen, E. (2011). Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater, 10, 456-461.
[66] Foo, W. J., Zhang, C., Ho, G. W. (2013). Non-noble metal Cu-loaded TiO 2 for enhanced photocatalytic H 2 production. Nanoscale, 5, 759-764.
[67] Tahir, M., Amin, N. S. (2015). Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl Catal A: Gen, 493, 90-102.
[68] Tian, J., Li, H., Xing, Z., Wang, L., Luo, Y., Asiri, A. M., Al-Youbi, A. O., Sun, X. (2012). One-pot green hydrothermal synthesis of CuO–Cu 2 O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catal Sci Technol, 2, 2227-2230.
[69] Tseng, I.-H., Chang, W.-C., Wu, J. C. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B: Environ, 37, 37-48.
[70] Slamet, N. H., Purnama, E., Kosela, S., Gunlazuardi, J. (2005). Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method. Catal Commun, 6, 313-319.
[71] Li, Y., Wang, W.-N., Zhan, Z., Woo, M.-H., Wu, C.-Y., Biswas, P. (2010). Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B: Environ, 100, 386-392.
[72] Guan, G., Kida, T., Harada, T., Isayama, M., Yoshida, A. (2003). Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl Catal A: Gen, 249, 11-18.
[73] Wu, J., Huang, Y., Ye, W., Li, Y. (2017). CO2 reduction: from the electrochemical to photochemical approach. Advanced Science, 4, 1700194.
[74] Xiang, Q., Cheng, B., Yu, J. (2015). Graphene-based photocatalysts for solar-fuel generation. Angew Chem Int Ed, 54, 11350-11366.
[75] Li, X., Wen, J., Low, J., Fang, Y., Yu, J. (2014). Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 57, 70-100.
[76] Stolarczyk, J. K., Bhattacharyya, S., Polavarapu, L., Feldmann, J. (2018). Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal, 8, 3602-3635.
[77] Tu, W., Zhou, Y., Zou, Z. (2014). Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater, 26, 4607-4626.
[78] Kisch, H. (2013). Semiconductor photocatalysis—mechanistic and synthetic aspects. Angew Chem Int Ed, 52, 812-847.
[79] Sutin, N., Creutz, C., Fujita, E. (1997). Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes. Comments Inorg Chem, 19, 67-92.
[80] Low, J., Cheng, B., Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci, 392, 658-686.
[81] Huang, Q., Yu, J., Cao, S., Cui, C., Cheng, B. (2015). Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Appl Surf Sci, 358, 350-355.
[82] Neaţu, S. t., Maciá-Agulló, J. A., Concepción, P., Garcia, H. (2014). Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc, 136, 15969-15976.
[83] White, J. L., Baruch, M. F., Pander III, J. E., Hu, Y., Fortmeyer, I. C., Park, J. E., Zhang, T., Liao, K., Gu, J., Yan, Y. (2015). Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev, 115, 12888-12935.
[84] Kang, Q., Wang, T., Li, P., Liu, L., Chang, K., Li, M., Ye, J. (2015). Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew Chem, 127, 855-859.
[85] Wang, T., Meng, X., Li, P., Ouyang, S., Chang, K., Liu, G., Mei, Z., Ye, J. (2014). Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect. Nano Energy, 9, 50-60.
[86] Raciti, D., Wang, C. (2018). Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Letters, 3, 1545-1556.
[87] Agarwal, A. S., Rode, E., Sridhar, N., Hill, D. (2017). Conversion of CO2 to value-added chemicals: Opportunities and challenges. Handbook of climate change mitigation and adaptation Cham: Springer International Publishing, 2487-2526.
[88] Xie, J., Huang, Y., Wu, M., Wang, Y. (2019). Electrochemical carbon dioxide splitting. ChemElectroChem, 6, 1587-1604.
[89] Hori, Y., Takahashi, R., Yoshinami, Y., Murata, A. (1997). Electrochemical reduction of CO at a copper electrode. J Phys Chem B, 101, 7075-7081.
[90] Nitopi, S., Bertheussen, E., Scott, S. B., Liu, X., Engstfeld, A. K., Horch, S., Seger, B., Stephens, I. E., Chan, K., Hahn, C. (2019). Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 119, 7610-7672.
[91] Yang, Y., Ohnoutek, L., Ajmal, S., Zheng, X., Feng, Y., Li, K., Wang, T., Deng, Y., Liu, Y., Xu, D. (2019). “Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization. J Mater Chem A, 7, 11836-11846.
[92] Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F., Koper, M. T. (2015). Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. The journal of physical chemistry letters, 6, 4073-4082.
[93] Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O. (1994). Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta, 39, 1833-1839.
[94] Garza, A. J., Bell, A. T., Head-Gordon, M. (2018). Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal, 8, 1490-1499.
[95] Lin, S.-C., Chang, C.-C., Chiu, S.-Y., Pai, H.-T., Liao, T.-Y., Hsu, C.-S., Chiang, W.-H., Tsai, M.-K., Chen, H. M. (2020). Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat Commun, 11, 1-12.
[96] Ren, D., Deng, Y., Handoko, A. D., Chen, C. S., Malkhandi, S., Yeo, B. S. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal, 5, 2814-2821.
[97] Chen, C. S., Handoko, A. D., Wan, J. H., Ma, L., Ren, D., Yeo, B. S. (2015). Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal Sci Technol, 5, 161-168.
[98] Kuhl, K. P., Cave, E. R., Abram, D. N., Jaramillo, T. F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci, 5, 7050-7059.
[99] Feng, X., Jiang, K., Fan, S., Kanan, M. W. (2016). A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent Sci, 2, 169-174.
[100] Nie, X., Esopi, M. R., Janik, M. J., Asthagiri, A. (2013). Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem, 125, 2519-2522.
[101] Hori, Y., Takahashi, I., Koga, O., Hoshi, N. (2003). Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J Mol Catal A: Chem, 199, 39-47.
[102] Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O. (1995). Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf Sci, 335, 258-263.
[103] Dattila, F., Garcı́a-Muelas, R., López, N. (2020). Active and Selective Ensembles in Oxide-Derived Copper Catalysts for CO2 Reduction. ACS Energy Letters, 5, 3176-3184.
[104] Hori, Y., Murata, A., Takahashi, R., Suzuki, S. (1987). Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J Am Chem Soc, 109, 5022-5023.
[105] Hansen, H. A., Varley, J. B., Peterson, A. A., Nørskov, J. K. (2013). Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. The journal of physical chemistry letters, 4, 388-392.
[106] Schouten, K., Kwon, Y., Van der Ham, C., Qin, Z., Koper, M. (2011). A new mechanism for the selectivity to C 1 and C 2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Cheml Sci, 2, 1902-1909.
[107] Calle-Vallejo, F., Koper, M. T. (2013). Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angew Chem, 125, 7423-7426.
[108] Cheng, T., Xiao, H., Goddard, W. A. (2017). Full atomistic reaction mechanism with kinetics for CO reduction on Cu (100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc Natl Acad Sci, 114, 1795-1800.
[109] Goodpaster, J. D., Bell, A. T., Head-Gordon, M. (2016). Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. The journal of physical chemistry letters, 7, 1471-1477.
[110] Luo, W., Nie, X., Janik, M. J., Asthagiri, A. (2016). Facet Dependence of CO2 Reduction Paths on Cu Electrodes. ACS Catal, 6, 219-229.
[111] Koper, M. T. (2013). Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Cheml Sci, 4, 2710-2723.
[112] Cheng, T., Fortunelli, A., Goddard, W. A. (2019). Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. Proc Natl Acad Sci, 116, 7718-7722.
[113] Cheng, T., Xiao, H., Goddard III, W. A. (2016). Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu (100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J Am Chem Soc, 138, 13802-13805.
[114] Heyes, J., Dunwell, M., Xu, B. (2016). CO2 reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. J Phy Chem C, 120, 17334-17341.
[115] Figueiredo, M. C., Ledezma-Yanez, I., Koper, M. T. (2016). In situ spectroscopic study of CO2 electroreduction at copper electrodes in acetonitrile. ACS Catal, 6, 2382-2392.
[116] Zhu, S., Jiang, B., Cai, W.-B., Shao, M. (2017). Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J Am Chem Soc, 139, 15664-15667.
[117] Gunathunge, C. M., Li, X., Li, J., Hicks, R. P., Ovalle, V. J., Waegele, M. M. (2017). Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J Phy Chem C, 121, 12337-12344.
[118] Moradzaman, M., Mul, G. (2020). Infrared Analysis of Interfacial Phenomena during Electrochemical Reduction of CO2 over Polycrystalline Copper Electrodes. ACS Catal, 10, 8049-8057.
[119] Gawande, M. B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev, 116, 3722-3811.
[120] Jeon, H. S., Timoshenko, J., Scholten, F., Sinev, I., Herzog, A., Haase, F. T., Roldan Cuenya, B. (2019). Operando Insight into the Correlation between the Structure and Composition of CuZn Nanoparticles and their Selectivity for the Electrochemical CO2 Reduction. J Am Chem Soc, 141, 19879-19887.
[121] Ma, Z., Tsounis, C., Kumar, P. V., Han, Z., Wong, R. J., Toe, C. Y., Zhou, S., Bedford, N. M., Thomsen, L., Ng, Y. H. (2020). Enhanced Electrochemical CO2 Reduction of Cu@ CuxO Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp3-type Defect. Adv Funct Mater, 1910118.
[122] Ament, K., Köwitsch, N., Hou, D., Götsch, T., Kröhnert, J., Heard, C. J., Trunschke, A., Lunkenbein, T., Armbrüster, M., Breu, J. (2020). Nanoparticles Supported on Sub-Nanometer Oxide Films: Scaling Model Systems to Bulk Materials. Angew Chem Int Ed.
[123] Larmier, K., Liao, W. C., Tada, S., Lam, E., Verel, R., Bansode, A., Urakawa, A., Comas-Vives, A., Copéret, C. (2017). CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal–support interface. Angew Chem Int Ed, 56, 2318-2323.
[124] Wu, Y. A., McNulty, I., Liu, C., Lau, K. C., Liu, Q., Paulikas, A. P., Sun, C.-J., Cai, Z., Guest, J. R., Ren, Y. (2019). Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy, 4, 957-968.
[125] Frei, E., Gaur, A., Lichternberg, H., Zwiener, L., Scherzer, M., Girgsdies, F., Lunkenbein, T., Schlögl, R. (2020). Cu− Zn Alloy Formation as Unfavored State for Efficient Methanol Catalysts. ChemCatChem, 12, 4029-4033.
[126] Lam, E., Noh, G., Chan, K. W., Larmier, K., Lebedev, D., Searles, K., Wolf, P., Safonova, O. V., Copéret, C. (2020). Enhanced CH 3 OH selectivity in CO2 hydrogenation using Cu-based catalysts generated via SOMC from Ga III single-sites. Cheml Sci, 11, 7593-7598.
[127] Manrique, R., Rodríguez-Pereira, J., Rincón-Ortiz, S. A., Bravo-Suárez, J. J., Baldovino-Medrano, V. G., Jiménez, R., Karelovic, A. (2020). The nature of the active sites of Pd–Ga catalysts in the hydrogenation of CO2 to methanol. Catal Sci Technol, 10, 6644-6658.
[128] Li, C. W., Ciston, J., Kanan, M. W. (2014). Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature, 508, 504-507.
[129] Handoko, A. D., Chan, K. W., Yeo, B. S. (2017). –CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials. ACS Energy Letters, 2, 2103-2109.
[130] Scott, S. B., Hogg, T. V., Landers, A. T., Maagaard, T., Bertheussen, E., Lin, J. C., Davis, R. C., Beeman, J. W., Higgins, D., Drisdell, W. S. (2019). Absence of oxidized phases in Cu under CO reduction conditions. ACS Energy Letters, 4, 803-804.
[131] Zhu, Q., Sun, X., Yang, D., Ma, J., Kang, X., Zheng, L., Zhang, J., Wu, Z., Han, B. (2019). Carbon dioxide electroreduction to C 2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat Commun, 10, 1-11.
[132] Chang, X., Wang, T., Zhang, P., Wei, Y., Zhao, J., Gong, J. (2016). Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew Chem Int Ed, 55, 8840-8845.
[133] Chang, X., Wang, T., Zhang, P., Wei, Y., Zhao, J., Gong, J. (2016). Frontispiece: Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2O Dark Cathode with Improved Selectivity for Carbonaceous Products. Angew Chem Int Ed, 55.
[134] Dutta, A., Rahaman, M., Luedi, N. C., Mohos, M., Broekmann, P. (2016). Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal, 6, 3804-3814.
[135] Li, J., Che, F., Pang, Y., Zou, C., Howe, J. Y., Burdyny, T., Edwards, J. P., Wang, Y., Li, F., Wang, Z. (2018). Copper adparticle enabled selective electrosynthesis of n-propanol. Nat Commun, 9, 1-9.
[136] Ting, L. R. L., García-Muelas, R., Martín, A. J., Veenstra, F. L., Chen, S. T. J., Peng, Y., Per, E. Y. X., Pablo-García, S., López, N., Pérez-Ramírez, J. (2020). Electrochemical Reduction of Carbon Dioxide to 1-Butanol on Oxide-Derived Copper. Angew Chem, 132, 21258-21265.
[137] Eilert, A., Cavalca, F., Roberts, F. S., Osterwalder, J. r., Liu, C., Favaro, M., Crumlin, E. J., Ogasawara, H., Friebel, D., Pettersson, L. G. (2017). Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. The journal of physical chemistry letters, 8, 285-290.
[138] Li, C. W., Kanan, M. W. (2012). CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc, 134, 7231-7234.
[139] Zhuang, T.-T., Pang, Y., Liang, Z.-Q., Wang, Z., Li, Y., Tan, C.-S., Li, J., Dinh, C. T., De Luna, P., Hsieh, P.-L. (2018). Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat Catal, 1, 946-951.
[140] Chang, X., Malkani, A., Yang, X., Xu, B. (2020). Mechanistic Insights into Electroreductive C–C coupling between CO and acetaldehyde into multicarbon products. J Am Chem Soc, 142, 2975-2983.
[141] Verdaguer-Casadevall, A., Li, C. W., Johansson, T. P., Scott, S. B., McKeown, J. T., Kumar, M., Stephens, I. E., Kanan, M. W., Chorkendorff, I. (2015). Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc, 137, 9808-9811.
[142] Bertheussen, E., Hogg, T. V., Abghoui, Y., Engstfeld, A. K., Chorkendorff, I., Stephens, I. E. (2018). Electroreduction of CO on polycrystalline copper at low overpotentials. ACS Energy Letters, 3, 634-640.
[143] Greeley, J. P. (2012). Active Site of an Industrial Catalyst. Science, 336, 810.
[144] Pan, Y., Shen, X., Yao, L., Bentalib, A., Peng, Z. (2018). Active sites in heterogeneous catalytic reaction on metal and metal oxide: theory and practice. Catalysts, 8, 478.
[145] Li, Y., Chan, S. H., Sun, Q. (2015). Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale, 7, 8663-8683.
[146] Tada, S., Kayamori, S., Honma, T., Kamei, H., Nariyuki, A., Kon, K., Toyao, T., Shimizu, K.-i., Satokawa, S. (2018). Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-Methanol hydrogenation. ACS Catal, 8, 7809-7819.
[147] Cheng, T., Xiao, H., Goddard, W. A. (2017). Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance. J Am Chem Soc, 139, 11642-11645.
[148] Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J., Nørskov, J. K. (2010). How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci, 3, 1311-1315.
[149] Liu, S., Huang, S. (2019). Size effects and active sites of Cu nanoparticle catalysts for CO2 electroreduction. Appl Surf Sci, 475, 20-27.
[150] Chen, C., Yan, X., Wu, Y., Liu, S., Sun, X., Zhu, Q., Feng, R., Wu, T., Qian, Q., Liu, H., Zheng, L., Zhang, J., Han, B. (2021). The in situ study of surface species and structures of oxide-derived copper catalysts for electrochemical CO2 reduction. Cheml Sci.
[151] Mistry, H., Varela, A. S., Bonifacio, C. S., Zegkinoglou, I., Sinev, I., Choi, Y.-W., Kisslinger, K., Stach, E. A., Yang, J. C., Strasser, P., Cuenya, B. R. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat Commun, 7, 12123.
[152] Tisseraud, C., Comminges, C., Belin, T., Ahouari, H., Soualah, A., Pouilloux, Y., Le Valant, A. (2015). The Cu–ZnO synergy in methanol synthesis from CO2, Part 2: Origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu–ZnO coprecipitate catalysts. J Catal, 330, 533-544.
[153] Greeley, J., Nørskov, J. K., Mavrikakis, M. (2002). Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem, 53, 319-348.
[154] Somorjai, G. A., Li, Y. (2010) Introduction to surface chemistry and catalysis, John Wiley & Sons.
[155] Choi, Y., Futagami, K., Fujitani, T., Nakamura, J. (2001). The difference in the active sites for CO2 and CO hydrogenations on Cu/ZnO-based methanol synthesis catalysts. Catal Lett, 73, 27-31.
[156] Gao, P., Li, F., Xiao, F., Zhao, N., Sun, N., Wei, W., Zhong, L., Sun, Y. (2012). Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO2 hydrogenation. Catal Sci Technol, 2, 1447-1454.
[157] Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen, F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B.-L. (2012). The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 336, 893-897.
[158] Zander, S., Kunkes, E. L., Schuster, M. E., Schumann, J., Weinberg, G., Teschner, D., Jacobsen, N., Schlögl, R., Behrens, M. (2013). The role of the oxide component in the development of copper composite catalysts for methanol synthesis. Angew Chem Int Ed, 52, 6536-6540.
[159] Kunkes, E. L., Studt, F., Abild-Pedersen, F., Schlögl, R., Behrens, M. (2015). Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? J Catal, 328, 43-48.
[160] Dasireddy, V. D., Likozar, B. (2019). The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renew Energ, 140, 452-460.
[161] Fujitani, T., Nakamura, I., Watanabe, T., Uchijima, T., Nakamura, J. (1995). Methanol synthesis by the hydrogenation of CO2 over Zn-deposited Cu (111) and Cu (110) surfaces. Catal Lett, 35, 297-302.
[162] Yao, L., Shen, X., Pan, Y., Peng, Z. (2019). Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol. J Catal, 372, 74-85.
[163] Kuld, S., Thorhauge, M., Falsig, H., Elkjær, C. F., Helveg, S., Chorkendorff, I., Sehested, J. (2016). Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 352, 969-974.
[164] Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A., Liu, P. (2017). Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 355, 1296-1299.
[165] Le Valant, A., Comminges, C., Tisseraud, C., Canaff, C., Pinard, L., Pouilloux, Y. (2015). The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ ZnO mechanical mixtures. J Catal, 324, 41-49.
[166] Graciani, J., Mudiyanselage, K., Xu, F., Baber, A. E., Evans, J., Senanayake, S. D., Stacchiola, D. J., Liu, P., Hrbek, J., Sanz, J. F. (2014). Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 345, 546-550.
[167] Kanai, Y., Watanabe, T., Fujitani, T., Saito, M., Nakamura, J., Uchijima, T. (1994). Evidence for the migration of ZnO x in a Cu/ZnO methanol synthesis catalyst. Catal Lett, 27, 67-78.
[168] Yoshihara, J., Campbell, C. T. (1996). Methanol synthesis and reverse water–gas shift kinetics over Cu (110) model catalysts: structural sensitivity. J Catal, 161, 776-782.
[169] Yoshihara, J., Parker, S., Schafer, A., Campbell, C. T. (1995). Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper. Catal Lett, 31, 313-324.
[170] Gao, J., Song, F., Li, Y., Cheng, W., Yuan, H., Xu, Q. (2020). Cu2In nanoalloy enhanced performance of Cu/ZrO2 catalysts for the CO2 hydrogenation to methanol. Ind Eng Chem Res.
[171] Kas, R., Kortlever, R., Milbrat, A., Koper, M. T., Mul, G., Baltrusaitis, J. (2014). Electrochemical CO2 reduction on Cu 2 O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys Chem Chem Phys, 16, 12194-12201.
[172] Ren, D., Wong, N. T., Handoko, A. D., Huang, Y., Yeo, B. S. (2016). Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. The journal of physical chemistry letters, 7, 20-24.
[173] Mandal, L., Yang, K. R., Motapothula, M. R., Ren, D., Lobaccaro, P., Patra, A., Sherburne, M., Batista, V. S., Yeo, B. S., Ager, J. W., Martin, J., Venkatesan, T. (2018). Investigating the Role of Copper Oxide in Electrochemical CO2 Reduction in Real Time. ACS Appl Mater Interfaces, 10, 8574-8584.
[174] Weng, Z., Wu, Y., Wang, M., Jiang, J., Yang, K., Huo, S., Wang, X.-F., Ma, Q., Brudvig, G. W., Batista, V. S. (2018). Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat Commun, 9, 1-9.
[175] Nielsen, N. D., Smitshuysen, T. E., Damsgaard, C. D., Jensen, A. D., Christensen, J. M. (2021). Characterization of oxide-supported Cu by infrared measurements on adsorbed CO. Surf Sci, 703, 121725.
[176] Kanai, Y., Watanabe, T., Fujitani, T., Uchijima, T., Nakamura, J. (1996). The synergy between Cu and ZnO in methanol synthesis catalysts. Catal Lett, 38, 157-163.
[177] Laudenschleger, D., Ruland, H., Muhler, M. (2020). Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al 2 O 3 catalysts. Nat Commun, 11, 1-10.
[178] Jiang, X., Wang, X., Nie, X., Koizumi, N., Guo, X., Song, C. (2018). CO2 hydrogenation to methanol on Pd-Cu bimetallic catalysts: H2/CO2 ratio dependence and surface species. Catal Today, 316, 62-70.
[179] Jiang, X., Nie, X., Wang, X., Wang, H., Koizumi, N., Chen, Y., Guo, X., Song, C. (2019). Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation. J Catal, 369, 21-32.
[180] Wang, W., Qu, Z., Song, L., Fu, Q. (2020). Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS. J Catal, 382, 129-140.
[181] Rasul, S., Anjum, D. H., Jedidi, A., Minenkov, Y., Cavallo, L., Takanabe, K. (2015). A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem, 127, 2174-2178.
[182] Samson, K., Sliwa, M., Socha, R. P., Góra-Marek, K., Mucha, D., Rutkowska-Zbik, D., Paul, J., Ruggiero-Mikołajczyk, M., Grabowski, R., Słoczynski, J. (2014). Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal, 4, 3730-3741.
[183] Ro, I., Liu, Y., Ball, M. R., Jackson, D. H., Chada, J. P., Sener, C., Kuech, T. F., Madon, R. J., Huber, G. W., Dumesic, J. A. (2016). Role of the Cu-ZrO2 interfacial sites for conversion of ethanol to ethyl acetate and synthesis of methanol from CO2 and H2. ACS Catal, 6, 7040-7050.
[184] Lam, E., Larmier, K., Wolf, P., Tada, S., Safonova, O. V., Copéret, C. (2018). Isolated Zr surface sites on silica promote hydrogenation of CO2 to CH3OH in supported Cu catalysts. J Am Chem Soc, 140, 10530-10535.
[185] Lam, E., Corral-Pérez, J. J., Larmier, K., Noh, G., Wolf, P., Comas-Vives, A., Urakawa, A., Copéret, C. (2019). CO2 hydrogenation on Cu/Al2O3: Role of the metal/support interface in driving activity and selectivity of a bifunctional catalyst. Angew Chem, 131, 14127-14134.
[186] Zheng, H., Narkhede, N., Han, L., Zhang, H., Li, Z. (2020). Methanol synthesis from CO2: a DFT investigation on Zn-promoted Cu catalyst. Res Chem Intermed, 46, 1749-1769.
[187] Chang, X., Wang, T., Zhao, Z. J., Yang, P., Greeley, J., Mu, R., Zhang, G., Gong, Z., Luo, Z., Chen, J. (2018). Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew Chem Int Ed, 57, 15415-15419.
[188] Chen, K., Fang, H., Wu, S., Liu, X., Zheng, J., Zhou, S., Duan, X., Zhuang, Y., Tsang, S. C. E., Yuan, Y. (2019). CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu–LaOx interfaces. Appl Catal B: Environ, 251, 119-129.
[189] Hong, Q.-J., Liu, Z.-P. (2010). Mechanism of CO2 hydrogenation over Cu/ZrO2 (212) interface from first-principles kinetics Monte Carlo simulations. Surf Sci, 604, 1869-1876.
[190] Tang, Q.-L., Hong, Q.-J., Liu, Z.-P. (2009). CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo. J Catal, 263, 114-122.
[191] Polierer, S., Jelic, J., Pitter, S., Studt, F. (2019). On the reactivity of the Cu/ZrO2 system for the hydrogenation of CO2 to methanol: A density functional theory study. J Phy Chem C, 123, 26904-26911.
[192] Liu, L., Su, X., Zhang, H., Gao, N., Xue, F., Ma, Y., Jiang, Z., Fang, T. (2020). Zirconia-Modified Copper Catalyst for CO2 Conversion to Methanol from DFT Study. Appl Surf Sci, 146900.
[193] Wang, L.-X., Guan, E., Wang, Z., Wang, L., Gong, Z., Cui, Y., Yang, Z., Wang, C., Zhang, J., Meng, X. (2020). Dispersed Nickel Boosts Catalysis by Copper in CO2 Hydrogenation. ACS Catal, 10, 9261-9270.
[194] Herman, R., Klier, K., Simmons, G., Finn, B., Bulko, J. B., Kobylinski, T. (1979). Catalytic synthesis of methanol from COH2:I. Phase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts. J Catal, 56, 407-429.
[195] Chu, S., Yan, X., Choi, C., Hong, S., Robertson, A. W., Masa, J., Han, B., Jung, Y., Sun, Z. (2020). Stabilization of Cu+ by tuning a CuO–CeO 2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem, 22, 6540-6546.
[196] Palomino, R. M., Ramírez, P. J., Liu, Z., Hamlyn, R., Waluyo, I., Mahapatra, M., Orozco, I., Hunt, A., Simonovis, J. P., Senanayake, S. D. (2018). Hydrogenation of CO2 on ZnO/Cu (100) and ZnO/Cu (111) catalysts: role of copper structure and metal–oxide interface in methanol synthesis. J Phys Chem B, 122, 794-800.
[197] Zhang, Z., Wang, S.-S., Song, R., Cao, T., Luo, L., Chen, X., Gao, Y., Lu, J., Li, W.-X., Huang, W. (2017). The most active Cu facet for low-temperature water gas shift reaction. Nat Commun, 8, 1-10.
[198] Nakamura, J., Choi, Y., Fujitani, T. (2003). On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top Catal, 22, 277-285.
[199] Kuld, S., Conradsen, C., Moses, P. G., Chorkendorff, I., Sehested, J. (2014). Quantification of Zinc Atoms in a Surface Alloy on Copper in an Industrial-Type Methanol Synthesis Catalyst. Angew Chem Int Ed, 53, 5941-5945.
[200] Fichtl, M. B., Schumann, J., Kasatkin, I., Jacobsen, N., Behrens, M., Schlögl, R., Muhler, M., Hinrichsen, O. (2014). Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules. Angew Chem Int Ed, 53, 7043-7047.
[201] Boudart, M. (1995). Turnover rates in heterogeneous catalysis. Chem Rev, 95, 661-666.
[202] Arena, F., Mezzatesta, G., Zafarana, G., Trunfio, G., Frusteri, F., Spadaro, L. (2013). Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation. J Catal, 300, 141-151.
[203] Zhai, Q., Xie, S., Fan, W., Zhang, Q., Wang, Y., Deng, W., Wang, Y. (2013). Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper (I) oxide co-catalysts with a core–shell structure. Angew Chem, 125, 5888-5891.
[204] Lee, S., Kim, D., Lee, J. (2015). Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew Chem, 127, 14914-14918.
[205] Szanyi, J., Goodman, D. W. (1991). Methanol synthesis on a Cu (100) catalyst. Catal Lett, 10, 383-390.
[206] Millar, G. J., Rochester, C. H., Bailey, S., Waugh, K. C. (1993). Combined temperature-programmed desorption and fourier-transform infrared spectroscopy study of CO2, CO and H2 interactions with model ZnO/SiO2, Cu/SiO2 and Cu/ZnO/SiO2 methanol synthesis catalysts. J Chem Soc, Faraday Trans, 89, 1109-1115.
[207] Ghiotti, G., Boccuzzi, F., Chiorino, A. (1986). The operation of the “metal-surface selection rule” on the vibrational spectra of species adsorbed on supported copper particles. Surf Sci, 178, 553-564.
[208] Topsøe, N.-Y., Topsøe, H. (1999). FTIR studies of dynamic surface structural changes in Cu-based methanol synthesis catalysts. J Mol Catal A: Chem, 141, 95-105.
[209] Xue, J., Wang, X., Qi, G., Wang, J., Shen, M., Li, W. (2013). Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. J Catal, 297, 56-64.
[210] Padley, M. B., Rochester, C. H., Hutchings, G. J., King, F. (1994). FTIR spectroscopic study of thiophene, SO2, and CO adsorption on Cu/Al2O3 catalysts. J Catal, 148, 438-452.
[211] Espinós, J. P., Morales, J., Barranco, A., Caballero, A., Holgado, J., González-Elipe, A. (2002). Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J Phys Chem B, 106, 6921-6929.
[212] Montini, T., Gombac, V., Sordelli, L., Delgado, J. J., Chen, X., Adami, G., Fornasiero, P. (2011). Nanostructured Cu/TiO2 Photocatalysts for H2 Production from Ethanol and Glycerol Aqueous Solutions. ChemCatChem, 3, 574-577.
[213] Bai, X., Li, Q., Shi, L., Niu, X., Ling, C., Wang, J. (2020). Hybrid CuO and Cux+ as Atomic Interfaces Promote High-Selectivity Conversion of CO2 to C2H5OH at Low Potential. Small, 16, 1901981.
[214] Tseng, I.-H., Wu, J. C., Chou, H.-Y. (2004). Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal, 221, 432-440.
[215] Slamet, H. W. N., Purnama, E., Riyani, K., Gunlazuardi, J. (2009). Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts. World Applied Sciences Journal, 6, 112-122.
[216] Liu, D., Fernández, Y., Ola, O., Mackintosh, S., Maroto-Valer, M., Parlett, C. M., Lee, A. F., Wu, J. C. (2012). On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catal Commun, 25, 78-82.
[217] Velu, S., Suzuki, K., Gopinath, C. S., Yoshida, H., Hattori, T. (2002). XPS, XANES and EXAFS investigations of CuO/ZnO/Al 2 O 3/ZrO 2 mixed oxide catalysts. Phys Chem Chem Phys, 4, 1990-1999.
[218] Moretti, G., Fierro, G., Lo Jacono, M., Porta, P. (1989). Characterization of CuO–ZnO catalysts by X-ray photoelectron spectroscopy: Precursors, calcined and reduced samples. Surf Interface Anal, 14, 325-336.
[219] Reitz, T., Lee, P., Czaplewski, K., Lang, J., Popp, K., Kung, H. (2001). Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction. J Catal, 199, 193-201.
[220] Wang, R., Jiang, R., Dong, C., Tong, T., Li, Z., Liu, H., Du, X.-W. (2021). Engineering a Cu/ZnOx Interface for High Methane Selectivity in CO2 Electrochemical Reduction. Ind Eng Chem Res, 60, 273-280.
[221] Schedel-Niedrig, T., Neisius, T., Böttger, I., Kitzelmann, E., Weinberg, G., Demuth, D., Schlögl, R. (2000). Copper (sub) oxide formation: a surface sensitive characterization of model catalysts. Phys Chem Chem Phys, 2, 2407-2417.
[222] Zhang, W., Huang, C., Xiao, Q., Yu, L., Shuai, L., An, P., Zhang, J., Qiu, M., Ren, Z., Yu, Y. (2020). Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J Am Chem Soc, 142, 11417-11427.
[223] Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R., Cuenya, B. R. (2020). The role of in situ generated morphological motifs and Cu (i) species in C2+ product selectivity during CO2 pulsed electroreduction. Nature Energy, 5, 317-325.
[224] Gao, D., Arán-Ais, R. M., Jeon, H. S., Cuenya, B. R. (2019). Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal, 2, 198-210.
[225] Lum, Y., Ager, J. W. (2019). Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat Catal, 2, 86-93.
[226] Cheng, D., Zhao, Z.-J., Zhang, G., Yang, P., Li, L., Gao, H., Liu, S., Chang, X., Chen, S., Wang, T. (2021). The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nat Commun, 12, 1-8.
[227] Li, X., Yang, X., Zhang, J., Huang, Y., Liu, B. (2019). In Situ/Operando Techniques for Characterization of Single-Atom Catalysts. ACS Catal, 9, 2521-2531.
[228] Zhu, Y., Wang, J., Chu, H., Chu, Y.-C., Chen, H. M. (2020). In Situ/Operando Studies for Designing Next-Generation Electrocatalysts. ACS Energy Letters, 5, 1281-1291.
[229] Zhu, K., Zhu, X., Yang, W. (2019). Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts. Angew Chem Int Ed, 58, 1252-1265.
[230] Qi, W., Yan, P., Su, D. S. (2018). Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods. Acc Chem Res, 51, 640-648.
[231] Chang, C.-J., Hung, S.-F., Hsu, C.-S., Chen, H.-C., Lin, S.-C., Liao, Y.-F., Chen, H. M. (2019). Quantitatively unraveling the redox shuttle of spontaneous oxidation/electroreduction of CuO x on silver nanowires using in situ X-ray absorption spectroscopy. ACS Cent Sci, 5, 1998-2009.
[232] Petkov, N. (2013). In Situ Real-Time TEM Reveals Growth, Transformation and Function in One-Dimensional Nanoscale Materials: From a Nanotechnology Perspective. ISRN Nanotechnology, 2013, 893060.
[233] Vesborg, P. C., Chorkendorff, I., Knudsen, I., Balmes, O., Nerlov, J., Molenbroek, A. M., Clausen, B. S., Helveg, S. (2009). Transient behavior of Cu/ZnO-based methanol synthesis catalysts. J Catal, 262, 65-72.
[234] Li, Y., Zakharov, D., Zhao, S., Tappero, R., Jung, U., Elsen, A., Baumann, P., Nuzzo, R. G., Stach, E., Frenkel, A. (2015). Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes. Nat Commun, 6, 7583.
[235] Wang, G., He, C.-T., Huang, R., Mao, J., Wang, D., Li, Y. (2020). Photoinduction of Cu Single Atoms Decorated on UiO-66-NH2 for Enhanced Photocatalytic Reduction of CO2 to Liquid Fuels. J Am Chem Soc.
Cite This Article
  • APA Style

    Ubong Jerome Etim, Raphael Semiat, Ziyi Zhong. (2021). CO2 Valorization Reactions over Cu-Based Catalysts: Characterization and the Nature of Active Sites. American Journal of Chemical Engineering, 9(3), 53-78. https://doi.org/10.11648/j.ajche.20210903.12

    Copy | Download

    ACS Style

    Ubong Jerome Etim; Raphael Semiat; Ziyi Zhong. CO2 Valorization Reactions over Cu-Based Catalysts: Characterization and the Nature of Active Sites. Am. J. Chem. Eng. 2021, 9(3), 53-78. doi: 10.11648/j.ajche.20210903.12

    Copy | Download

    AMA Style

    Ubong Jerome Etim, Raphael Semiat, Ziyi Zhong. CO2 Valorization Reactions over Cu-Based Catalysts: Characterization and the Nature of Active Sites. Am J Chem Eng. 2021;9(3):53-78. doi: 10.11648/j.ajche.20210903.12

    Copy | Download

  • @article{10.11648/j.ajche.20210903.12,
      author = {Ubong Jerome Etim and Raphael Semiat and Ziyi Zhong},
      title = {CO2 Valorization Reactions over Cu-Based Catalysts: Characterization and the Nature of Active Sites},
      journal = {American Journal of Chemical Engineering},
      volume = {9},
      number = {3},
      pages = {53-78},
      doi = {10.11648/j.ajche.20210903.12},
      url = {https://doi.org/10.11648/j.ajche.20210903.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20210903.12},
      abstract = {Active sites are the individual reactors at the molecular scale distributed on the heterogeneous catalyst surface. To a large extent, they determine the catalytic performances and the reaction pathway of a reaction. Therefore, understanding the nature and structure of the actives sites is crucial to improve and develop novel, robust and practical catalysts. The wide application of state-of-the-art characterization techniques these years makes it possible to obtain crucial information about the active sites for some catalysts. The Cu-based catalysts are widely used for water gas shift (WGS) and methanol synthesis from syngas (CO + H2). Although having some technical issues in the direct conversion of CO2 into value-added products, they are still promising for this reaction to mitigate CO2 concentration in the atmosphere. In the last several years, intensive efforts have been made to study Cu-based catalysts, and substantial progress has been achieved in understanding their active sites and the reaction mechanism. This review discusses the structure and nature of active sites of Cu-based catalysts for CO2 valorization in thermo-, photo-, and electro-catalysis. We present the characterization results of different types of Cu-based catalysts applied in these processes, unravel their active sites and structures, and figure out the most important and critical factors that drive the reactions on the sites. The principle and applications of various characterization techniques are also briefly analyzed and compared. It is expected to provide fundamental insights and perspectives for designing highly active and efficient catalysts for CO2 conversion.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - CO2 Valorization Reactions over Cu-Based Catalysts: Characterization and the Nature of Active Sites
    AU  - Ubong Jerome Etim
    AU  - Raphael Semiat
    AU  - Ziyi Zhong
    Y1  - 2021/06/21
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ajche.20210903.12
    DO  - 10.11648/j.ajche.20210903.12
    T2  - American Journal of Chemical Engineering
    JF  - American Journal of Chemical Engineering
    JO  - American Journal of Chemical Engineering
    SP  - 53
    EP  - 78
    PB  - Science Publishing Group
    SN  - 2330-8613
    UR  - https://doi.org/10.11648/j.ajche.20210903.12
    AB  - Active sites are the individual reactors at the molecular scale distributed on the heterogeneous catalyst surface. To a large extent, they determine the catalytic performances and the reaction pathway of a reaction. Therefore, understanding the nature and structure of the actives sites is crucial to improve and develop novel, robust and practical catalysts. The wide application of state-of-the-art characterization techniques these years makes it possible to obtain crucial information about the active sites for some catalysts. The Cu-based catalysts are widely used for water gas shift (WGS) and methanol synthesis from syngas (CO + H2). Although having some technical issues in the direct conversion of CO2 into value-added products, they are still promising for this reaction to mitigate CO2 concentration in the atmosphere. In the last several years, intensive efforts have been made to study Cu-based catalysts, and substantial progress has been achieved in understanding their active sites and the reaction mechanism. This review discusses the structure and nature of active sites of Cu-based catalysts for CO2 valorization in thermo-, photo-, and electro-catalysis. We present the characterization results of different types of Cu-based catalysts applied in these processes, unravel their active sites and structures, and figure out the most important and critical factors that drive the reactions on the sites. The principle and applications of various characterization techniques are also briefly analyzed and compared. It is expected to provide fundamental insights and perspectives for designing highly active and efficient catalysts for CO2 conversion.
    VL  - 9
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Guangdong Technion Israel Institute of Technology (GTIIT), Shantou, China

  • Guangdong Technion Israel Institute of Technology (GTIIT), Shantou, China

  • Guangdong Technion Israel Institute of Technology (GTIIT), Shantou, China

  • Sections