| Peer-Reviewed

On the Bipolaronic Mechanism of High-Temperature Superconductivity in "Ginzburg Sandwiches" FeSe-SrTiO3; SrTiO3-FeSe-SrTiO3

Received: 12 January 2023    Accepted: 13 February 2023    Published: 15 March 2023
Views:       Downloads:
Abstract

The mechanism of experimentally observed high-temperature superconductivity (HTSC) in thin FeSe films on SrTiO3-type substrates has been theoretically investigated. Applying the theory of large-radius bipolaronic states developed based on the exact Hamiltonian of electron-phonon interaction for arbitrary multilayer structures, the bipolaronic mechanism of Cooper pairing of polarons in FeSe monolayers on SrTiO3 substrates is investigated and in three-layer structures SrTiO3–FeSe–SrTiO3, which are typical "Ginzburg sandwiches". Approach proposed by Ginzburg to enhance the electron-phonon interaction and achieve HTSС by separating the regions where electrons are located (forming Cooper pairs or bipolarons) with the regions in which excitons are excited (or inertial polarization is induced), made it possible to implement the criteria for the formation of bipolaronic states in multilayer structures with high binding energy, due to the possibility of selecting optimal geometric and material parameters (layer thicknesses, dielectric permittivity, optical frequencies, effective masses). It is shown that the binding energy of bipolarons (Ebp) in these structures is in the range of values for which bipolarons remain stable quasiparticles and can exist at temperatures significantly higher than their Bose condensation temperature. The formation of bipolarons with high binding energy in the FeSe monolayer on the SrTiO3 substrate provides the emergence of a bipolaronic HTS with a critical temperature (Tc) more than an order of magnitude higher than Tc for massive FeSe crystals. At the same time, the binding energy of the bipolaron in the FeSe layer with thickness d on the SrTiO3 substrate increases exponentially with decreasing d (Ebp~exp(-d / RS) RS is the radius of the polaron) and reaches its maximum value in the limit of the multilayer film FeSe (d→0). The presented theory allows modeling a multilayer system and determining the range of values of the material and geometric parameters of layers forming a multilayer structure with a large number of FeSe layers in which Tc values in the room temperature range can be achieved.

Published in American Journal of Physics and Applications (Volume 11, Issue 1)
DOI 10.11648/j.ajpa.20231101.12
Page(s) 8-20
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Bipolarons, High-Temperature Superconductivity, Electron-Phonon Interaction, Multilayer Structures

References
[1] Bednorz, J. G, & Müller, K. A. (1986). Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter, 64, 189-193. doi: 10.1007/978-94-011-1622-0_32.
[2] Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., & Chu C. W. (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett, 58, 908-910. doi: 10.1007/978-94-011-1622-0_36.
[3] Kamihara, Y., Watanabe, T., Hirano, M., & Hosono, H. (2008). Iron-Based Layered Superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26K. Journal Am. Chem. S, 130, 3296-3297. doi: 10.1021/ja800073m.
[4] Takahashi, H., Igawa, K., Arii, K., Kamihara, Y., Hirano, M., & Hosono, H. (2008). Superconductivity at 43 K in an Iron-Based Layered Compound, Nature, 453, 376-378. doi: 10.1038/nature06972.
[5] Sadovskii, M. V. (2016). High-temperature superconductivity in FeSe monolayers. UFN, 186 (10), 1035-1057. doi: 10.3367/UFNe.2016.06.037825.
[6] Ginzburg, V. L., & Kirzhnits, D. A. (1967). On high-temperature and surface superconductivity, Dokl. Acad. Sciences of the USSR, 176 (3), 553-555.
[7] Ginzburg, V. L. (1968). The problem of high-temperature superconductivity, UFN, 95, 91-95. doi: 10.3367/ UFNr.0095.196805g.0091.
[8] Ginzburg, V. L. (1970). The problem of high-temperature superconductivity. II, Sov. Phys. Usp., 13, 335-352. doi: 10.1070/PU1970v013n03ABEH004256.
[9] Allender, D., Bray, J., & Bardeen J. (1973). Model for an Exciton Mechanism of Superconductivity. Phys. Rev. B., 7, 1020-1028. doi: 10.1103/PhysRevB.7.1020.
[10] Gor’kov, Lev P. (2016). Peculiarities of superconductivity in the single-layer interface, Phys. Rev. B., 93 (6), 060507 (R). doi: 10.1103/PhysRevB.93.060507.
[11] Zhang, S., Guan, J., Jia, X., Liu, B., Wang, W., Li, F., Wang, L., Ma, X., Xue, Q., Zhang, J., Plummer, E. W., Zhu, X, & Guo, J. (2016). Role of SrTiO3 phonon penetrating thin FeSe films in the enhancement of superconductivity. Phys. Rev. B., 94, 081116 (R). doi: 10.1103/PhysRevB.94.081116.
[12] Lee, J. J., Schmitt, F. T., Moore, R. G., Johnston, S., Cui, Y.-T., Li, W., Yi, M., Liu, Z. K., Hashimoto, M., Zhang, Y., Lu, D. H., Devereaux, T. P., Lee, D.-H., & Shen, Z.-X. (2014). Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature, 515, 245-248. doi: 10.1038/nature13894.
[13] Zhang, S., Wei, T., Guan, J., Zhu, Q, Wei, Q., Wang, W., Zhang, J,, Plummer, E. W., Zhu, X, Zhang, Z., & Guo, J. (2019). Enhanced Superconducting State in FeSe/SrTiO3 by a Dynamic Interfacial Polaron Mechanism. Phys. Rev. Lett., 122 (6), 066802. doi: 10.1103/PhysRevLett.122.066802.
[14] Pekar, S. I. (1951) Research in Electron Theory of Crystals, AEC-tr-555. US Atomic Energy Commission.
[15] Ginzburg, V. L. (1952). The current state of the theory of superfluidity. II. Microscopic theory, UFN, 48 (9), 25-118. doi: 10.3367/UFNr.0048.195209b.0025.
[16] Vinetsky, V. L., & Pashitsky, E. A. (1975). Superfluidity of charged Bose gas and the bipolaronoc mechanism of superconductivity, Ukrainian Physical Journal, 20 (2), 338-341.
[17] Vinetsky, V. L., & Giterman M. S. (1958). On the theory of interaction of "excess" charges in ionic crystals, JETP, 6 (3), 560-564.
[18] Vinetsky, V. L., & Pashitsky, E. A. (1961) Bipolaronic states of current carriers in ionic crystals, JETP, 13 (5), 1023-1028.
[19] Aleksandrov, A. S., & Ranniger, J. (1981). Bipolaronic superconductivity, Phys. Rev. B, 24, 1164-1169. doi: 10.1103/PhysRevB.24.1164.
[20] Adamowski, J. (1989). Formation of Fröhlich bipolarons, Phys. Rev. B., 39 (6), 3649-3652. doi: 10.1103/PhysRevB.39.3649.
[21] Fomin, V. M., & Pokatilov, E. P. (1985). Phonons and the electron-phonon interaction in multilayer systems, Phys. Stat. Sol. (b), 132 (1), 69-82. doi:/10.1002/pssb.2221320106.
[22] Pokatilov, E. P., Fomin, V. M., & Beril, S. I. Vibrational excitations, polarons and excitons in multilayer structures and superlattices. Chisinau: Știința, 1990.
[23] Pokatilov, E. P., Beril, S. I., Fomin, V. M., & Ryabukhin, G. Ju. (1992). Bipolaron states in multilayer structures with quantum wells (part I), Phys. Stat. Sol. (b), 169 (2), 429-441. doi: 10.1002/pssb.2221690216.
[24] Beril, S. I., Fomin, V. M., & Starchuk, A. S. (2020). Theory of polarons, excitons, bipolarons and kinetic effects in multilayer structures of various geometries and superlattices. Tiraspol: Pridnestrovian University Publishing House, 696 p.
[25] Haken, H. (1956). Zur Quantentheorie des Mehrelectronensystems im swingenden Gitter. Zeitschrift für Physik, 146 (5), 527-554. doi: 10.1007/BF01333179.
[26] Beril, S. I., Pokatilov, E. P., Fomin, V. M., & Pogorilko, G. A. (1985). Vanier-Mott excitons in multilayer systems, Fizika i Tekhnika Poluprovodnikov, 19 (3), 412-417.
[27] Pokatilov, E. P., Beril, S. I., Semenavskaya, N. N., & Fahood, M. (1990). Charge energy spectrum in multilayer structures and superlattices in a field of self-action potentials, Phys. Stat. Sol. (b), 158 (1), 165-174. doi: 10.1002/pssb.2221580115.
[28] Lee, D. H. (2015). What Makes the Tc of FeSe/SrTiO3 so High? arXiv: 1508.02461v1[cond-mat.str-al] 11Aug.2015. doi: 10.48550/arxiv.1508.02461.
[29] Emin, D., Hillery, M. S. (1989). Formation of a large singlet bipolaron: Application to high-temperature bipolaronic superconductivity, Phys. Rev. B., 39 (10), 6575-6593. doi: 10.1103/PhysRevB.39.6575.
[30] Schafroth, M. R. (1955). Superconductivity of a charged ideal Bose Gas. Phys. Rev. B., 100 (2), 463-475. doi: 10.1103/PhysRev.100.463.
[31] Sadovskii, M. V. (2022). Limits of Eliashberg theory and bounds for superconducting transition temperature, Phys. Usp., 65 (7), 724-739. doi: 10.3367/UFNe.2021.05.039007.
[32] Fuchs, R., & Kliewer, K. L. (1965). Optical Modes of Vibration in an Ionic Crystal Slab, Phys. Rev., 140 (6A), A2076-A2088. doi: 10.1103/PhysRev.140.A2076.
[33] Pokatilov, E. P., & Beril, S. I. (1982). Spatially Extended Optical Interface Modes in a Two-Layer Periodic Structure, Phys. Stat. Sol. (b), 110, K75-K78. doi: 10.1002/pssb.2221100158.
[34] Pokatilov, E. P., & Beril, S. I. (1983). Electron-Phonon Interaction in Periodic Two-Layer Structures, Phys. Stat. Sol. (b), 118, 567-573. doi: 10.1002/pssb.2221180213.
[35] Sood, A. K., Menendez, J., Cardona, M., & Ploog K. (1985). Interface vibrational modes in GaAs–AlAs superlattices, Phys. Rev. Lett., 54 (19), 2115-2118. doi: 10.1103/ PhysRevLett.54.2115.
[36] Klein, M. V. (1986). Phonons in semiconductor superlattices, IEEE Journal of Quantum Electronics, QE-22 (9), 1760-1770. doi: 10.1109/JQE.1986.1073174.
[37] Schwartz, G. P., Gualtieri, G. J., Sunder, W. A., & Farrow, L. A. Light scattering from confined and interface optical vibrational modes in strained-layer GaSb/AlSb superlattices, Phys. Rev. B., 36 (9), 4868-4877. doi: 10.1103/PhysRevB.36.4868.
Cite This Article
  • APA Style

    Stepan Beril, Alexander Starchuk. (2023). On the Bipolaronic Mechanism of High-Temperature Superconductivity in "Ginzburg Sandwiches" FeSe-SrTiO3; SrTiO3-FeSe-SrTiO3. American Journal of Physics and Applications, 11(1), 8-20. https://doi.org/10.11648/j.ajpa.20231101.12

    Copy | Download

    ACS Style

    Stepan Beril; Alexander Starchuk. On the Bipolaronic Mechanism of High-Temperature Superconductivity in "Ginzburg Sandwiches" FeSe-SrTiO3; SrTiO3-FeSe-SrTiO3. Am. J. Phys. Appl. 2023, 11(1), 8-20. doi: 10.11648/j.ajpa.20231101.12

    Copy | Download

    AMA Style

    Stepan Beril, Alexander Starchuk. On the Bipolaronic Mechanism of High-Temperature Superconductivity in "Ginzburg Sandwiches" FeSe-SrTiO3; SrTiO3-FeSe-SrTiO3. Am J Phys Appl. 2023;11(1):8-20. doi: 10.11648/j.ajpa.20231101.12

    Copy | Download

  • @article{10.11648/j.ajpa.20231101.12,
      author = {Stepan Beril and Alexander Starchuk},
      title = {On the Bipolaronic Mechanism of High-Temperature Superconductivity in "Ginzburg Sandwiches" FeSe-SrTiO3; SrTiO3-FeSe-SrTiO3},
      journal = {American Journal of Physics and Applications},
      volume = {11},
      number = {1},
      pages = {8-20},
      doi = {10.11648/j.ajpa.20231101.12},
      url = {https://doi.org/10.11648/j.ajpa.20231101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20231101.12},
      abstract = {The mechanism of experimentally observed high-temperature superconductivity (HTSC) in thin FeSe films on SrTiO3-type substrates has been theoretically investigated. Applying the theory of large-radius bipolaronic states developed based on the exact Hamiltonian of electron-phonon interaction for arbitrary multilayer structures, the bipolaronic mechanism of Cooper pairing of polarons in FeSe monolayers on SrTiO3 substrates is investigated and in three-layer structures SrTiO3–FeSe–SrTiO3, which are typical "Ginzburg sandwiches". Approach proposed by Ginzburg to enhance the electron-phonon interaction and achieve HTSС by separating the regions where electrons are located (forming Cooper pairs or bipolarons) with the regions in which excitons are excited (or inertial polarization is induced), made it possible to implement the criteria for the formation of bipolaronic states in multilayer structures with high binding energy, due to the possibility of selecting optimal geometric and material parameters (layer thicknesses, dielectric permittivity, optical frequencies, effective masses). It is shown that the binding energy of bipolarons (Ebp) in these structures is in the range of values for which bipolarons remain stable quasiparticles and can exist at temperatures significantly higher than their Bose condensation temperature. The formation of bipolarons with high binding energy in the FeSe monolayer on the SrTiO3 substrate provides the emergence of a bipolaronic HTS with a critical temperature (Tc) more than an order of magnitude higher than Tc for massive FeSe crystals. At the same time, the binding energy of the bipolaron in the FeSe layer with thickness d on the SrTiO3 substrate increases exponentially with decreasing d (Ebp~exp(-d / RS) RS is the radius of the polaron) and reaches its maximum value in the limit of the multilayer film FeSe (d→0). The presented theory allows modeling a multilayer system and determining the range of values of the material and geometric parameters of layers forming a multilayer structure with a large number of FeSe layers in which Tc values in the room temperature range can be achieved.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - On the Bipolaronic Mechanism of High-Temperature Superconductivity in "Ginzburg Sandwiches" FeSe-SrTiO3; SrTiO3-FeSe-SrTiO3
    AU  - Stepan Beril
    AU  - Alexander Starchuk
    Y1  - 2023/03/15
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajpa.20231101.12
    DO  - 10.11648/j.ajpa.20231101.12
    T2  - American Journal of Physics and Applications
    JF  - American Journal of Physics and Applications
    JO  - American Journal of Physics and Applications
    SP  - 8
    EP  - 20
    PB  - Science Publishing Group
    SN  - 2330-4308
    UR  - https://doi.org/10.11648/j.ajpa.20231101.12
    AB  - The mechanism of experimentally observed high-temperature superconductivity (HTSC) in thin FeSe films on SrTiO3-type substrates has been theoretically investigated. Applying the theory of large-radius bipolaronic states developed based on the exact Hamiltonian of electron-phonon interaction for arbitrary multilayer structures, the bipolaronic mechanism of Cooper pairing of polarons in FeSe monolayers on SrTiO3 substrates is investigated and in three-layer structures SrTiO3–FeSe–SrTiO3, which are typical "Ginzburg sandwiches". Approach proposed by Ginzburg to enhance the electron-phonon interaction and achieve HTSС by separating the regions where electrons are located (forming Cooper pairs or bipolarons) with the regions in which excitons are excited (or inertial polarization is induced), made it possible to implement the criteria for the formation of bipolaronic states in multilayer structures with high binding energy, due to the possibility of selecting optimal geometric and material parameters (layer thicknesses, dielectric permittivity, optical frequencies, effective masses). It is shown that the binding energy of bipolarons (Ebp) in these structures is in the range of values for which bipolarons remain stable quasiparticles and can exist at temperatures significantly higher than their Bose condensation temperature. The formation of bipolarons with high binding energy in the FeSe monolayer on the SrTiO3 substrate provides the emergence of a bipolaronic HTS with a critical temperature (Tc) more than an order of magnitude higher than Tc for massive FeSe crystals. At the same time, the binding energy of the bipolaron in the FeSe layer with thickness d on the SrTiO3 substrate increases exponentially with decreasing d (Ebp~exp(-d / RS) RS is the radius of the polaron) and reaches its maximum value in the limit of the multilayer film FeSe (d→0). The presented theory allows modeling a multilayer system and determining the range of values of the material and geometric parameters of layers forming a multilayer structure with a large number of FeSe layers in which Tc values in the room temperature range can be achieved.
    VL  - 11
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Theoretical Physics, T. G. Shevchenko Pridnestrovian State University, Tiraspol, Moldova

  • Department of Theoretical Physics, T. G. Shevchenko Pridnestrovian State University, Tiraspol, Moldova

  • Sections