| Peer-Reviewed

Microstructure and Mineralogy of Compressed Earth Bricks Incorporating Shea Butter Wastes Stabilized with Cement

Received: 15 October 2021    Accepted: 12 November 2021    Published: 9 December 2021
Views:       Downloads:
Abstract

The current context of sustainable development encourages the development of materials with low environmental impact, which explains the renewed interest in earthen constructions. This study is therefore a contribution to the valorization of clay raw materials from Côte d'Ivoire and agro-industrial waste in eco-construction. The aims of this study was studied the effect of shea butter wastes on the mineralogy and microstructure of Compressed Earth Bricks (CEB) stabilized with cement. To do this, two clay raw materials denoted F (Fronan) and K (Katiola) were sampled and then characterized. Various geotechnical and physicochemical tests have shown that these soils are loamy sand of class A2 and essentially contain quartz, kaolinite, mica and ferric compounds. As for shea butter wastes, it is mainly rich in lignin (32%); cellulose (28%) and hemicellulose (19%). Several samples of bricks with different percentages by mass of clay and shea butter wastes (0-10%), stabilized with 5% cement were prepared and then characterized. The results of the mechanical tests showed that the clay-cement matrix could contain 4% shea butter wastes for the formulations with clay F against 6% with clay K. The corresponding optimal formulations are F91TK4C5 and K89TK6C5 with clays F and K respectively. The SEM images showed a less dense microstructure for the optimal formulation F91TK4C5 compared to that of the clay-cement matrix unlike K89TK6C5 where the microstructure remained always dense. X-ray diffraction did not allow to observe mineralogical modifications with the incorporation of shea butter wastes into the clay-cement matrix due to their low quantities in the optimal formulations.

Published in Advances in Materials (Volume 10, Issue 4)
DOI 10.11648/j.am.20211004.13
Page(s) 67-74
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Clayey Materials, Shea Butter Wastes, Compressed Earth Brick, Microstructure, Mineralogy

References
[1] Sawadogo, M., Seynou, M., Zerbo, L., Sorgho, B., Lecomte-Nana, G. L., Blanchart, P., & Ouédraogo, R. (2020). Formulation of Clay Refractory Bricks : Influence of the Nature of Chamotte and the Alumina Content in the Clay. Advances in Materials, 9 (4), 59.
[2] Ouedraogo, K. A. J. (2019). Stabilisation de matériaux de construction durables et écologiques à base de terre crue par des liants organiques et/ou minéraux à faibles impacts environnementaux. Thèse de doctorat, Université Toulouse 3 Paul Sabatier.
[3] Riza, F. V., Abdul Rahman, I. & Zaidi, A. M. A. (2011). Preliminary Study of Compressed Stabilized Earth Brick (CSEB). Australian Journal of Basic and Applied Sciences, 5, 6-12.
[4] Aymerich, F., Fenu, L., & Meloni, P. (2012). Effect of reinforcing wool fibres on fracture and energy absorption properties of an earthen material. Construction and Building Material, 27: 66–72.
[5] Alam, I., Naseer, A. & Shah, A. A. (2015). Economical Stabilization of Clay for Earth Buildings Construction in Rainy and Flood Prone Areas. Construction and Building Materials, 77, 154-159.
[6] AFNOR, Association Française de Normalisation (1996). Analyse granulométrique- méthode de tamisage à sec après lavage, NF P. 94-056.
[7] AFNOR, Association Française de Normalisation (1992). Analyse granulométrique des sols- méthode par sédimentation, NF P. 94-057.
[8] AFNOR, Association Française de Normalisation (1993). Détermination des limites d’Atterberg—Limite de liquidité à la coupelle—Limite de plasticité au rouleau, NF P. 94-051.
[9] AFNOR, Association Française de Normalisation (2010). Mélanges traités et mélanges non traités aux liants hydraulique- méthodes d’essai de détermination en laboratoire de la masse volumique de référence et de la teneur en eau- Compactage Proctor, NF EN 13286-2.
[10] AFNOR, Association Française de Normalisation (2016). Méthodes d’essais des ciments- détermination des résistances en compression et en flexion, NF EN 196-1.
[11] GTR, Guide de Terrassement Routier (1992). Guide technique: Réalisation des remblais et des couches de forme. Paris-Bagneux: LCPC-SETRA.
[12] AFNOR, Association Francaise de Normalisation (2001). Blocs de terre comprimée pour murs et cloisons, NF XP P 13-901.
[13] Guerraoui, F., Zamama, M., & Ibnoussina, M. (2008). Caractérisation minéralogique et géotechnique des argiles utilisées dans la céramique de Safi (Maroc). African Journal of Science and Technology, Science and Engineering Series, 9, 1–11.
[14] Laibi, A. B., Gomina, M., Sorgho, B., Sagbo, E., Blanchart, P., Boutouil, M., & Sohounhloule, D. K. (2017). Caractérisation physico-chimique et géotechnique de deux sites argileux du Bénin en vue de leur valorisation dans l’éco-construction. International Journal of Biological and Chemical Sciences, 11 (1), 499-514.
[15] Nirmala, G., & Viruthagiri, G. (2015). A view of microstructure with technological behavior of waste incorporated ceramic bricks. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135: 76–80.
[16] Lecomte-Nana, G., Bonnet, J.-P., & Soro, N. (2013). Influence of iron onto the structural reorganization process during the sintering of kaolins. Journal of the European Ceramic Society, 33 (4), 661–668.
[17] Sorgho, B. (2013). Caractérisation et valorisation de quelques argiles du Burkina Faso : Application au traitement des eaux et aux géomatériaux de construction. Thèse de Doctorat, Université de Ouagadougou.
[18] Sei, J., Jumas, J. C., Olivier-Fourcade, J., Quiquampoix, H., & Staunton, S. (2002). Role of Iron Oxid the Phosphate Adsorption Properties of Kaolinites from the Ivory Coast. Clays and Clay minerals, 50 (2), 217–222.
[19] Soro, N. S. (2003). Influence des ions fer sur les transformations thermiques de la kaolinite. Thèse de doctorat, Université de Limoges.
[20] Goure Doubi, B. I. H. (2013). Etude de la consolidation des matériaux" géomimétiques" à base d’argile latéritique : Effet des acides et des phases ferriques. Thèse de doctorat, Université de Limoges.
[21] Castelein, O. (2000). Influence de la vitesse de traitement thermique sur le comportement du kaolin bio: application au frittage rapide. Thèse de doctorat, Université de Limoges.
[22] Pascal, P. (1967) Nouveau traité de chimie minérale : Fer. Masson et Cie.
[23] Chen, C. Y., Lan, G. S., & Tuan, W. H. (2000). Microstructural evolution of mullite during the sintering of kaolin powder compacts. Ceramics international, 26 (7), 715–720.
[24] Millogo, Y. (2008). Etude géotechnique, chimique et minéralogique de matières premières argileuse et latéritique du Burkina Faso améliorées aux liants hydrauliques: application au génie civil (bâtiment et route). Thèse de doctorat, Université de Ouagadougou.
[25] Saikia, B. J., & Parthasarathy, G. (2010). Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. Journal of Modern Physics, 1 (04), 206.
[26] Rouxhet, P. G., Samudacheata, N., Jacobs, H., & Anton, O. (1977). Attribution of the OH stretching bands of kaolinite. Clay Minerals, 12 (2), 171–179.
[27] White, J. L. (1971). Interpretation of infrared spectra of soil minerals. Soil science, 112 (1), 22–31.
[28] Bich, C. (2005). Contribution à l’étude de l’activation thermique du kaolin : Évolution de la structure cristallographique et activité pouzzolanique. Thèse de doctorat, INSA, Lyon.
[29] Schwertmann, U., & Cornell, R. M. (2000). Iron oxides in the laboratory: preparation and characterization. edition Germany Wiley-VCH.
[30] Konan, K. L. (2006). Interaction entre des matériaux argileux et un milieu basique riche en calcium. Thèse de doctorat, Université de Limoges.
[31] Walker, P. J. (1995). Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cement and concrete composites 17 (4): 301–310.
[32] ARS 674. (1998). Organisation Régionale Africaine de Normalisation, Ed. Blocs de terre comprimée: norme. Technologie no 11, CDI et CRATerre-EAG, Belgique.
Cite This Article
  • APA Style

    Alfred Niamien Kouamé, Léon Koffi Konan, Bi Irié Hervé Gouré Doubi. (2021). Microstructure and Mineralogy of Compressed Earth Bricks Incorporating Shea Butter Wastes Stabilized with Cement. Advances in Materials, 10(4), 67-74. https://doi.org/10.11648/j.am.20211004.13

    Copy | Download

    ACS Style

    Alfred Niamien Kouamé; Léon Koffi Konan; Bi Irié Hervé Gouré Doubi. Microstructure and Mineralogy of Compressed Earth Bricks Incorporating Shea Butter Wastes Stabilized with Cement. Adv. Mater. 2021, 10(4), 67-74. doi: 10.11648/j.am.20211004.13

    Copy | Download

    AMA Style

    Alfred Niamien Kouamé, Léon Koffi Konan, Bi Irié Hervé Gouré Doubi. Microstructure and Mineralogy of Compressed Earth Bricks Incorporating Shea Butter Wastes Stabilized with Cement. Adv Mater. 2021;10(4):67-74. doi: 10.11648/j.am.20211004.13

    Copy | Download

  • @article{10.11648/j.am.20211004.13,
      author = {Alfred Niamien Kouamé and Léon Koffi Konan and Bi Irié Hervé Gouré Doubi},
      title = {Microstructure and Mineralogy of Compressed Earth Bricks Incorporating Shea Butter Wastes Stabilized with Cement},
      journal = {Advances in Materials},
      volume = {10},
      number = {4},
      pages = {67-74},
      doi = {10.11648/j.am.20211004.13},
      url = {https://doi.org/10.11648/j.am.20211004.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.am.20211004.13},
      abstract = {The current context of sustainable development encourages the development of materials with low environmental impact, which explains the renewed interest in earthen constructions. This study is therefore a contribution to the valorization of clay raw materials from Côte d'Ivoire and agro-industrial waste in eco-construction. The aims of this study was studied the effect of shea butter wastes on the mineralogy and microstructure of Compressed Earth Bricks (CEB) stabilized with cement. To do this, two clay raw materials denoted F (Fronan) and K (Katiola) were sampled and then characterized. Various geotechnical and physicochemical tests have shown that these soils are loamy sand of class A2 and essentially contain quartz, kaolinite, mica and ferric compounds. As for shea butter wastes, it is mainly rich in lignin (32%); cellulose (28%) and hemicellulose (19%). Several samples of bricks with different percentages by mass of clay and shea butter wastes (0-10%), stabilized with 5% cement were prepared and then characterized. The results of the mechanical tests showed that the clay-cement matrix could contain 4% shea butter wastes for the formulations with clay F against 6% with clay K. The corresponding optimal formulations are F91TK4C5 and K89TK6C5 with clays F and K respectively. The SEM images showed a less dense microstructure for the optimal formulation F91TK4C5 compared to that of the clay-cement matrix unlike K89TK6C5 where the microstructure remained always dense. X-ray diffraction did not allow to observe mineralogical modifications with the incorporation of shea butter wastes into the clay-cement matrix due to their low quantities in the optimal formulations.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Microstructure and Mineralogy of Compressed Earth Bricks Incorporating Shea Butter Wastes Stabilized with Cement
    AU  - Alfred Niamien Kouamé
    AU  - Léon Koffi Konan
    AU  - Bi Irié Hervé Gouré Doubi
    Y1  - 2021/12/09
    PY  - 2021
    N1  - https://doi.org/10.11648/j.am.20211004.13
    DO  - 10.11648/j.am.20211004.13
    T2  - Advances in Materials
    JF  - Advances in Materials
    JO  - Advances in Materials
    SP  - 67
    EP  - 74
    PB  - Science Publishing Group
    SN  - 2327-252X
    UR  - https://doi.org/10.11648/j.am.20211004.13
    AB  - The current context of sustainable development encourages the development of materials with low environmental impact, which explains the renewed interest in earthen constructions. This study is therefore a contribution to the valorization of clay raw materials from Côte d'Ivoire and agro-industrial waste in eco-construction. The aims of this study was studied the effect of shea butter wastes on the mineralogy and microstructure of Compressed Earth Bricks (CEB) stabilized with cement. To do this, two clay raw materials denoted F (Fronan) and K (Katiola) were sampled and then characterized. Various geotechnical and physicochemical tests have shown that these soils are loamy sand of class A2 and essentially contain quartz, kaolinite, mica and ferric compounds. As for shea butter wastes, it is mainly rich in lignin (32%); cellulose (28%) and hemicellulose (19%). Several samples of bricks with different percentages by mass of clay and shea butter wastes (0-10%), stabilized with 5% cement were prepared and then characterized. The results of the mechanical tests showed that the clay-cement matrix could contain 4% shea butter wastes for the formulations with clay F against 6% with clay K. The corresponding optimal formulations are F91TK4C5 and K89TK6C5 with clays F and K respectively. The SEM images showed a less dense microstructure for the optimal formulation F91TK4C5 compared to that of the clay-cement matrix unlike K89TK6C5 where the microstructure remained always dense. X-ray diffraction did not allow to observe mineralogical modifications with the incorporation of shea butter wastes into the clay-cement matrix due to their low quantities in the optimal formulations.
    VL  - 10
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Constitution and Reaction of Matter, University Félix Houphou?t Boigny, Abidjan, C?te d’Ivoire

  • Laboratory of Constitution and Reaction of Matter, University Félix Houphou?t Boigny, Abidjan, C?te d’Ivoire

  • Unit for Training and Research of Biological Sciences, University Péléforo Gon Coulibaly, Korhogo, C?te d’Ivoire

  • Sections