| Peer-Reviewed

Organic-Inorganic Hybrid Materials: Crystal Growth and XRD Analysis of [(C38H30N8)2•CoCl4] and [(CH3NH3)2•CoCl4]

Received: 7 October 2022    Accepted: 24 October 2022    Published: 30 October 2022
Views:       Downloads:
Abstract

Two tetrachloridocobaltate (II) hybrid compounds were isolated and structurally characterized by single crystal X-ray crystallography. The compound [(C38H30N8)2•CoCl4] (1), crystallizes in the monoclinic space group P21/c with Z = 4, a = 12.0894(7) Å, b = 15.1839(8) Å, c = 19.8015(11) Å, β = 90.786(2)° and V = 3634.5(3) Å3. Compound [(CH3NH3)2•CoCl4] (2), crystallizes in the monoclinic space group P21/c with Z = 4, a = 7.6385(5) Å, b = 12.6684(8) Å, c = 10.8730(6) Å, β = 96.540(2)° and V = 1045.31(11) Å3. The compound 1 consists of 2,3,5-triphenyltetrazolium cations and tetrachloridocobaltate (II) ions connected through weak C-H•••Cl hydrogen bonds affording a 3D structure. Additional π•••π interactions consolidate the stability and the compactness of the 3D framework. The tetrazolium (C1N1N2N3N4) ring forms dihedral angles of 85.04(11), 49.37(11) and 27.85(11)° with the planes of the benzene rings of the substituent groups while the tetrazolium (C20N5N6N7N8) ring forms dihedral angles of 52.92(11), 47.37(11) and 9.97(11)° with the planes of the benzene rings of the substituent groups. The compound 2 is composed of methylammonium cations and tetrachloridocobaltate (II) dianions connected by extended N-H•••Cl hydrogen bonding patterns giving rise to a 3D structure. The methylammonium cations adopt a general position and are not exceptional. In both structures, the Co centre within the dianion is bonded to four chloride ligands and adopts a distorted tetrahedral geometry. The extensive hydrogen bonding patterns within compound 2 describe R22(4), R34(10), R44(12), R55(14), R46(14), R56(16) and R66(18) rings whereas 1, through the weak C-H•••Cl hydrogen bond patterns, generates mainly R21(4) rings and other hydrogen bonds of D type.

Published in Advances in Materials (Volume 11, Issue 4)
DOI 10.11648/j.am.20221104.12
Page(s) 85-93
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

2,3,5-Triphenyltetrazolium, Methylammonium, Cobalt (II), Single Crystal X-ray Crystallography, 3D Structure

References
[1] Amamou, W., Essalhi, R., Chniba-Boudjada, N., Zouari, F. (2022). Synthesis, crystal structure, Hirshfeld surface analysis and magnetic studies of bis [1,3-dicyclohexyl-2-ethyl isouronium] tetrachlorocobaltate (II), Journal of Molecular Structure, 1252, 132089. doi: 10.1016/j.molstruc.2021.132089.
[2] Daub, M., Stroh, R., Hillebrecht, H. (2016). Synthesis, Crystal Structure, and Optical Properties of (CH3NH3)2CoX4 (X = Cl, Br, I, Cl0.5Br0.5, Cl0.5I0.5, Br0.5I0.5). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 642, 268-272. 10.1002/zaac.201500738.
[3] Yin, J., Liu, X., Fan, L., Wei, J., He, G., Shi, S., Guo, J., Yuan, C., Chai, N., Wang, C., Cui, J., Wang, X., Zhou, H., Tian, D. (2019). Synthesis, crystal structure, absorption properties, photoelectric behavior of organic–inorganic hybrid (CH3NH3)2•CoCl4. Applied Organometallic Chemistry, 33 (4), e4795. doi: 10.1002/aoc.4795.
[4] Mărutescu, L., Calu, L., Chifiriuc, M. C., Bleotu, C., Daniliuc, C.-G., Fălcescu, D., Kamerzan, C. M., Badea, M., Olar, R. (2017). Synthesis, Physico-chemical Characterization, Crystal Structure and Influence on Microbial and Tumor Cells of Some Co (II) Complexes with 5,7-Dimethyl-1,2,4-triazolo [1,5-a] pyrimidine. Molecules, 22, 1233. doi: 10.3390/molecules22071233.
[5] Maha, M., Janzen, D. E., Mohamed, R., Wajda, S. (2016). Synthesis, Crystal Structure, Thermal Analysis, Spectroscopic, and Magnetic properties of a Novel Organic Cation Tetrachlorocobaltate (II). Journal of Superconductivity and Novel Magnetism, 29 (6), 1573-1581. doi: 10.1007/s10948-016-3451-0.
[6] Tounsi, A., Hamdi, B., Zouari, R., Salah, A. B. (2016). DFT (B3LYP/LanL2DZ), non-linear optical and electrical studies of a new hybrid compound: [C6H10(NH3)2]CoCl4•H2O. Physica E, 84, 384-394. doi: 10.1016/j.physe.2016.07.025.
[7] Gong, D., Jia, W., Chen, T., Huang, K.-W. (2013). Polymerization of 1,3-butadiene catalyzed by pincer cobalt (II) complexes derived from 2-(1-arylimino)-6-(pyrazol-1-yl)pyridine ligands. Applied Catalysis A, 464, 35-42. doi: 10.1016/j.apcata.2013.04.026.
[8] Ai, P., Chen, L., Jie, S., Li, B.-G. (2013). Polymerization of 1,3-butadiene catalyzed by ion-pair cobalt complexes with (benzimidazolyl)pyridine alcohol ligands. Journal of Molecular Catalysis A: Chemical, 380, 1-9. doi: 10.1016/j.molcata.2013.09.007.
[9] Liu, M., McGillicuddy, R. D., Vuong, H., Tao, S., Slavney, A. H., Gonzalez, M. I., Billinge, S. J. L., Mason, J. A. (2021). Network-Forming Liquids from Metal–Bis (acetamide) Frameworks with Low Melting Temperatures. Journal of the American Chemical Society, 143 (7), 2801-2811. doi: 10.1021/jacs.0c11718.
[10] Abozeid, S. M., Asik, D., Sokolow, G. E., Lovell, J. F., Nazarenko, A. Y., Morrow, J. R. (2020). CoII Complexes as Liposomal CEST Agents. Angewandte Chemie International Edition, 59 (29), 12093-12097. doi: 10.1002/anie.202003479.
[11] Miecznikowski, J. R., Jasinski, J. P., Kaur, M., Bonitatibus, S. C., Almanza, E. M., Kharbouch, R. M., Zygmont, S. E., Landy, K. R. (2020). Preparation of SNS Cobalt (II) Pincer Model Complexes of Liver Alcohol Dehydrogenase. Journal of Visualized Experiments, 157, e60668. doi: 10.3791/60668.
[12] Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnak, C., Titis, J., Boca, R. (2019). Long magnetic relaxation time of tetracoordinate Co2+ in imidazo [1,5-a] pyridinium-based (C13H12N3)2[CoCl4] hybrid salt and [Co(C13H12N3)Cl3] molecular complex. Dalton Transactions, 48 (30), 11278-11284. doi: 10.1039/C9DT01642B.
[13] Moussa, O. B., Chebbi, H., Zid, M. F. (2019). Synthesis, crystal structure, vibrational study, optical properties and Hirshfeld surface analysis of bis (2,6-diaminopyridinium) tetrachloridocobaltate (II) monohydrate. Journal of Molecular Structure, 1180, 72-80. doi: 10.1016/j.molstruc.2018.11.077.
[14] Said, M., Boughzala, H. (2020). Synthesis, crystal structure, vibrational study, optical properties and thermal behavior of a new hybrid material bis (3-amino-4-phenyl-1H-pyrazolium) tetrachloridocobaltate (II) monohydrate. Journal of Molecular Structure, 1203, 127413. doi: 10.1016/j.molstruc.2019.127413.
[15] Zhilyaeva, E. I., Shilov, G. V., Torunova, S. A., Akimov, A. V., Tokarev, S. V., Konarev, D. V., Flakina, A. M., Lyubovskii, R. B., Aldoshin, S. M., Lyubovskaya, R. N. (2020). Structure and properties of ET charge transfer salts with cobalt (II)/zinc (II) anion networks templated by urea. Inorganica Chimica Acta, 505, 119483. doi: 10.1016/j.ica.2020.119483.
[16] Abdelkader, M. M., Abdelmohsen, M., Aboud, A. I. (2021). Crystal structure, magnetic susceptibility, dielectric permittivity, and phase transition in a new organic–inorganic hybrid perovskite (n- C8 H17NH3)2CoCl4. Chem. Phys. Lett., 770, 138423. doi: 10.1016/j.cplett.2021.138423.
[17] Landolsi, M., Abid, S. (2021). Crystal structure and Hirshfeld surface analysis of trans-2,5-di¬methyl¬piperazine-1,4-diium tetra¬chlorido¬cobaltate (II). Acta Crystallographica, E77 (4), 424-427. doi: 10.1107/S2056989021002954.
[18] Gjikaj, M., Xie, T., Brockner, W. (2009). Uncommon Compounds in Antimony Pentachloride – Ionic Liquid Systems: Synthesis, Crystal Structure and Vibrational Spectra of the Complexes [TPT] [SbCl6] and [Cl-EMIm] [SbCl6]. Zeitschrift für Anorganische und Allgemeine Chemie, 635 (6-7), 1036–1040. doi: 10.1002/zaac.200801392.
[19] Xie, T., Brockner, W., Gjikaj, M. (2009). Formation and Crystal Structure of 2,3,5-Triphenyltetrazolium Hexachlorophosphate and Dichlorophosphate (V), [TPT]+[PCl6] and [TPT]+[PO2Cl2]. Zeitschrift für Naturforschung, b64, 989–994. doi: 10.1515/znb-2009-0901.
[20] Golovanov, D. G., Perekalin, D. S., Yakovenko, A. A., Antipin, M. Y., Lyssenko, K. A. (2005). The remarkable stability of the Cl•••(π-system) contacts in 2,3,5-triphenyltetrazolium chloride. Mendeleev Communications, 15 (6), 237–239. doi: 10.1070/MC2005v015n06ABEH002184.
[21] Fun, H.-K., Chia, T. S., Mostafa, G. A. E., Hefnawy, M. M., Abdel-Aziz, H. A. (2012). 2,3,5-Triphenyl-2H-tetra­zol-3-ium bromide ethanol monosolvate. Acta Crystallographica, E68, o2566. doi: 10.1107/S1600536812032953.
[22] Fun, H.-K., Chia, T. S., Mostafa, G. A. E., Hefnawy, M. M., Abdel-Aziz, H. A. (2012). 2,3,5-Triphenyl-2H-tetra­zol-3-ium tetra­phenyl­borate. Acta Crystallographica, E68, o2567. doi: 10.1107/S1600536812032941.
[23] Ghabbour, H. A., AlRuqi, O. S., Mostafa, G. A. E. (2017). The crystal structure of 2,3,5-triphenyl-2,3-dihydro-1H-tetrazol-1-ium 2,3-dioxoindoline-5-sulfonate, C27H19N5O5S. Zeitschrift für Kristallographie, 232 (4), 603–605. doi: 10.1515/ncrs-2016-0366.
[24] Fun, H.-K., Chia, T. S., Mostafa, G. A. E., Abunassif, M. M., Abdel-Aziz, H. A. (2012). 2,3,5-Triphenyl-2H-tetra­zol-3-ium iodide. Acta Crystallographica, E68, o2621. doi: 10.1107/S1600536812033661.
[25] Gjikaj, M., Xie, T., Brockner, W. (2009). Synthesis, Crystal Structure and Vibrational Spectrum of 2,3,5-Triphenyltetrazolium Hexachloridoniobate (V) and Oxidotetrachloridoniobate (V) Acetonitrile, [TPT][NbCl6] and [TPT][NbOCl4(CH3CN)]. Zeitschrift für Anorganische und Allgemeine Chemie, 635 (13-14), 2273–2278. doi: 10.1002/zaac.200900174.
[26] Diop, M. B., Diop, L., Oliver, A. G. (2018). Acetonyltriphenylphosphonium 2,3,5-triphenyltetrazolium tetrachloridocuprate (II). Acta Crystallographica, E74, 69–71. doi: 10.1107/S205698901701800X.
[27] Kawamura, Y., Yamauchi, J., Azuma, N. (1997). Molecular and Crystal Structure of the Complex Composed of 2,3,5-Triphenyltetrazolium Cation and Dichloro-(1,3,5-triphenylformazanato) cobaltate (II) Anion. Acta Crystallographica, B53, 451–456. doi: 10.1107/S0108768196015960.
[28] Nakashima, K., Kawame, N., Kawamura, Y., Tamada, O., Yamauchi, J. (2009). Bis(2,3,5-triphenyl­tetra­zolium) tetra­thio­cyanato­cobaltate (II). Acta Crystallographica, E65, m1406–m1407. doi: 10.1107/S1600536809041464.
[29] Buttrus, N. H., Alyass, J. M., Mohammad, A. F. (2013). Synthesis, Characterization of Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ Complex Salts with 2,3,5-(Triphenyl) Tetrazolium Chloride and the Crystal Structure of [CN4(C6H5)3]2[CuCl4]. Journal of Chemistry and Chemical Engineering, 7, 613–620. doi: 10.17265/1934-7375/2013.07.004.
[30] Diop, M. B., Diop, L., Maris, T. (2015). Crystal structure of bis (2-methyl-1H-imidazol-3-ium) tetrachloridocobaltate (II). Acta Crystallographica, E71, 1064–1066. doi: 10.1107/S2056989015014127.
[31] Diop, M. B., Diop, L., Oliver, A. G. (2015). Crystal structure of bis(acetonyltriphenylphosphonium) tetrachloridocobaltate (II). Acta Crystallographica, E71, m209–m210. doi: 10.1107/S2056989015019180.
[32] Apex2, Crystallographic Software, Suite, Bruker AXS Inc., Madison, Wisconsin (USA) 2014.
[33] Krause, L., Herbst-Irmer, R., Sheldrick, G. M. and Stalke, D. (2015): Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 3–10.
[34] SAINT (Version 8.34A), Area Detector Integration Software, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
[35] Sheldrick, G. M. (2015). SHELXT-Integrated space-group and Crystal structure determination. Acta Crystallographica, A71 (1), 3–8. doi: 10.1107/S2053273314026370.
[36] Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica, C71 (1), 3–8. doi: 10.1107/S2053229614024218.
[37] de Meulenaer, J., Tompa, H. (1965). The absorption correction in crystal structure analysis. Acta Crystallographica, 19 (6), 1014–1018. doi: 10.1107/S0365110X65004802.
[38] Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica, A64, 112–122. doi: 10.1107/S0108767307043930.
[39] Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42 (2), 339–341. doi: 10.1107/S0021889808042726.
[40] Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. (2008). Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41 (2), 466-470. doi: 10.1107/S0021889807067908.
[41] Worley, C., Yangui, A., Roccanova, R., Du, M.-H., Saparov, B. (2019). (CH3NH3)AuX4•H2O (X=Cl, Br) and (CH3NH3)AuCl4: Low-Band Gap Lead-Free Layered Gold Halide Perovskite Materials, Chemistry–A European Journal, 25 (42), 9875-9884. doi: 10.1002/chem.201901112.
Cite This Article
  • APA Style

    Mouhamadou Birame Diop, Modou Sarr, Mouhamadou Sembene Boye, Sérigne Cissé, Libasse Diop, et al. (2022). Organic-Inorganic Hybrid Materials: Crystal Growth and XRD Analysis of [(C38H30N8)2•CoCl4] and [(CH3NH3)2•CoCl4]. Advances in Materials, 11(4), 85-93. https://doi.org/10.11648/j.am.20221104.12

    Copy | Download

    ACS Style

    Mouhamadou Birame Diop; Modou Sarr; Mouhamadou Sembene Boye; Sérigne Cissé; Libasse Diop, et al. Organic-Inorganic Hybrid Materials: Crystal Growth and XRD Analysis of [(C38H30N8)2•CoCl4] and [(CH3NH3)2•CoCl4]. Adv. Mater. 2022, 11(4), 85-93. doi: 10.11648/j.am.20221104.12

    Copy | Download

    AMA Style

    Mouhamadou Birame Diop, Modou Sarr, Mouhamadou Sembene Boye, Sérigne Cissé, Libasse Diop, et al. Organic-Inorganic Hybrid Materials: Crystal Growth and XRD Analysis of [(C38H30N8)2•CoCl4] and [(CH3NH3)2•CoCl4]. Adv Mater. 2022;11(4):85-93. doi: 10.11648/j.am.20221104.12

    Copy | Download

  • @article{10.11648/j.am.20221104.12,
      author = {Mouhamadou Birame Diop and Modou Sarr and Mouhamadou Sembene Boye and Sérigne Cissé and Libasse Diop and Allen G. Oliver and David Renald},
      title = {Organic-Inorganic Hybrid Materials: Crystal Growth and XRD Analysis of [(C38H30N8)2•CoCl4] and [(CH3NH3)2•CoCl4]},
      journal = {Advances in Materials},
      volume = {11},
      number = {4},
      pages = {85-93},
      doi = {10.11648/j.am.20221104.12},
      url = {https://doi.org/10.11648/j.am.20221104.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.am.20221104.12},
      abstract = {Two tetrachloridocobaltate (II) hybrid compounds were isolated and structurally characterized by single crystal X-ray crystallography. The compound [(C38H30N8)2•CoCl4] (1), crystallizes in the monoclinic space group P21/c with Z = 4, a = 12.0894(7) Å, b = 15.1839(8) Å, c = 19.8015(11) Å, β = 90.786(2)° and V = 3634.5(3) Å3. Compound [(CH3NH3)2•CoCl4] (2), crystallizes in the monoclinic space group P21/c with Z = 4, a = 7.6385(5) Å, b = 12.6684(8) Å, c = 10.8730(6) Å, β = 96.540(2)° and V = 1045.31(11) Å3. The compound 1 consists of 2,3,5-triphenyltetrazolium cations and tetrachloridocobaltate (II) ions connected through weak C-H•••Cl hydrogen bonds affording a 3D structure. Additional π•••π interactions consolidate the stability and the compactness of the 3D framework. The tetrazolium (C1N1N2N3N4) ring forms dihedral angles of 85.04(11), 49.37(11) and 27.85(11)° with the planes of the benzene rings of the substituent groups while the tetrazolium (C20N5N6N7N8) ring forms dihedral angles of 52.92(11), 47.37(11) and 9.97(11)° with the planes of the benzene rings of the substituent groups. The compound 2 is composed of methylammonium cations and tetrachloridocobaltate (II) dianions connected by extended N-H•••Cl hydrogen bonding patterns giving rise to a 3D structure. The methylammonium cations adopt a general position and are not exceptional. In both structures, the Co centre within the dianion is bonded to four chloride ligands and adopts a distorted tetrahedral geometry. The extensive hydrogen bonding patterns within compound 2 describe R22(4), R34(10), R44(12), R55(14), R46(14), R56(16) and R66(18) rings whereas 1, through the weak C-H•••Cl hydrogen bond patterns, generates mainly R21(4) rings and other hydrogen bonds of D type.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Organic-Inorganic Hybrid Materials: Crystal Growth and XRD Analysis of [(C38H30N8)2•CoCl4] and [(CH3NH3)2•CoCl4]
    AU  - Mouhamadou Birame Diop
    AU  - Modou Sarr
    AU  - Mouhamadou Sembene Boye
    AU  - Sérigne Cissé
    AU  - Libasse Diop
    AU  - Allen G. Oliver
    AU  - David Renald
    Y1  - 2022/10/30
    PY  - 2022
    N1  - https://doi.org/10.11648/j.am.20221104.12
    DO  - 10.11648/j.am.20221104.12
    T2  - Advances in Materials
    JF  - Advances in Materials
    JO  - Advances in Materials
    SP  - 85
    EP  - 93
    PB  - Science Publishing Group
    SN  - 2327-252X
    UR  - https://doi.org/10.11648/j.am.20221104.12
    AB  - Two tetrachloridocobaltate (II) hybrid compounds were isolated and structurally characterized by single crystal X-ray crystallography. The compound [(C38H30N8)2•CoCl4] (1), crystallizes in the monoclinic space group P21/c with Z = 4, a = 12.0894(7) Å, b = 15.1839(8) Å, c = 19.8015(11) Å, β = 90.786(2)° and V = 3634.5(3) Å3. Compound [(CH3NH3)2•CoCl4] (2), crystallizes in the monoclinic space group P21/c with Z = 4, a = 7.6385(5) Å, b = 12.6684(8) Å, c = 10.8730(6) Å, β = 96.540(2)° and V = 1045.31(11) Å3. The compound 1 consists of 2,3,5-triphenyltetrazolium cations and tetrachloridocobaltate (II) ions connected through weak C-H•••Cl hydrogen bonds affording a 3D structure. Additional π•••π interactions consolidate the stability and the compactness of the 3D framework. The tetrazolium (C1N1N2N3N4) ring forms dihedral angles of 85.04(11), 49.37(11) and 27.85(11)° with the planes of the benzene rings of the substituent groups while the tetrazolium (C20N5N6N7N8) ring forms dihedral angles of 52.92(11), 47.37(11) and 9.97(11)° with the planes of the benzene rings of the substituent groups. The compound 2 is composed of methylammonium cations and tetrachloridocobaltate (II) dianions connected by extended N-H•••Cl hydrogen bonding patterns giving rise to a 3D structure. The methylammonium cations adopt a general position and are not exceptional. In both structures, the Co centre within the dianion is bonded to four chloride ligands and adopts a distorted tetrahedral geometry. The extensive hydrogen bonding patterns within compound 2 describe R22(4), R34(10), R44(12), R55(14), R46(14), R56(16) and R66(18) rings whereas 1, through the weak C-H•••Cl hydrogen bond patterns, generates mainly R21(4) rings and other hydrogen bonds of D type.
    VL  - 11
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal

  • Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal

  • Department of Physic and Chemistry, Faculty of Science and Technology of Education and Training, Cheikh Anta Diop University, Dakar, Senegal

  • Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal

  • Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal

  • Department of Chemistry and Biochemistry, University of Notre Dame, Nieuwland, USA

  • Reactivity and Solid State Chemistry Laboratory, University of Picardie, Jules Verne, Amiens, France

  • Sections