| Peer-Reviewed

Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault

Received: 11 February 2023    Accepted: 13 March 2023    Published: 28 March 2023
Views:       Downloads:
Abstract

The building and construction sector has a significant impact on the environment due to its high consumption of energy resources and increasing levels of emissions, and pollution. According to the United Nations Human Settlements Program (UN-HABITAT), the energy used by buildings and construction accounts for more than a third of the final energy consumed in the world and a quarter of greenhouse gas emissions. African countries such as Burkina Faso are concerned in this reality in the field of building. This is why the major issue in the tropic today is the construction of new buildings with high environmental quality and high energy performance. Today's construction choices will have an impact on future generations. The technique and materials of a building contribute to the health, safety and comfort of people. In the present work, the operating temperature and the PMV/PPD indices in a Nubian vault were determined. The operating temperature and the PMV/PPD indices are indicators of thermal comfort. Thus, the knowledge of these indicators allows to appreciate the state of comfort in the Nubian vault. It is in this perspective that the operating temperature will be determined by the adaptive method. The Fanger model is used for the determination of the PMV/PPD indexes. From the state of sensation obtained, acceptable ambient conditions can be defined for an individual in a tropical zone. As an alternative, the most suitable construction type and building materials could be recommended for each type of climate.

Published in Advances in Materials (Volume 12, Issue 1)
DOI 10.11648/j.am.20231201.12
Page(s) 9-16
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Operating Temperature, Wall Temperature, PMV Indice, PPD Indice, Thermal Comfort, Adaptive Approach, Analytical Model

References
[1] M’Sellem, H., & Alkama, D., Le confort thermique entre perception et évaluation par les techniques d’analyse bioclimatique - Cas des lieux de travail dans les milieux arides à climat chaud et sec-. Revue Des Energies Renouvelables, 12, 471–488, 2009.
[2] Zoma, F., Toguyeni, D. Y. K., Kiemtoré, B. J., & Ouedraogo, E., Valorization of Local Construction and Technique: Hygrothermal Behavior, Thermal and Visual Comfort of a Nubian Vaulted Construction in Sahelian Climate of Ouagadougou. Current Journal of Applied Science and Technology, 39 (29), 110–123, 2020.
[3] Halidi, A., Confort thermique thermique d’une habitation bioclimatique Antananarivo, 2015.
[4] ISO 7730, Reference number ISO 7730: 2005 (E) ISO 2005 INTERNATIONAL STANDARD ISO 7730 Third edition 2005-11-15 Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and l, 2005.
[5] Olesen, B. W, Brager, G. S., A better way to predict thermal comfort. ASHRAE Journal, August, 20–26, 2004.
[6] Rabetanetiarimanana; & Razanamanampisoa, Etude du confort thermique à partir d ’ une expérimentation et simulation avec EnergyPlus. November 2018.
[7] K. Jnat, Analyse et optimisation des dépenses d’énergie dans le logement social, thèse, Université de Lille, École Doctorale Sciences pour l’Ingénieur, Laboratoire Génie Civil et géo-Environnement, 2018.
[8] Raji, S., Caractérisation hygro thermique, par une approche multi échelle, de constructions en bois massif en vue d’amélioration énergétique et de valorisation environnementale, 2006.
[9] Fgaier, F. E. L., Delivre, D., Ecole, P. A. R. L., Lille, C. D. E., Aubert, J., & Fleureau, J., Conception, production et qualification des briques en terre cuite et en terre crue, 2013.
[10] De Dear, R., & Brager, G. S., The adaptive model of thermal comfort and energy conservation in the built environment. International Journal of Biometeorology, 45 (2), 100–108, 2001.
[11] Dear, B. et De, A Standard for Natural Ventilation. The Biblical Archaeologist, 55 (4), 227, 2000.
[12] Jannot, Y., & Djiako, T., Economie d’énergie et confort thermique dans l’habitat en zone tropicale. International Journal of Refrigeration, 17 (3), 166–173, 1994.
[13] Moujalled, B., Modélisation dynamique du confort thermique dans les bâtiments naturellement ventilés, 2007.
[14] P. O. Fanger, Thermal comfort, analysis and application in environmental engineering. 1970.
[15] Gaye, S., Caractérisation des propriétés mécaniques, acoustiques et thermiques dematériaux locaux de construction au Sénégal, 2001.
[16] Minane, J. M., Confort thermique et methodes de climatisation passive ou a faible cout : application au puits canadien, 2010.
[17] Ouattara, F., Toure, S., Memeledje, Thermiques dans une case ronde en geobeton. Journal Des Scieces, 4 (1), 2004.
[18] Grosdemouge, V., Proposition d’indicateurs de confort thermique et estimation de la température radiante moyenne en milieu urbain tropical. Contribution à la méthode nationale d’évaluation des ÉcoQ. March, 2021.
[19] Dessureault, P. C., Pertinence et conditions d’utilisation des indices thermiques dans le contexte québécois, 2014.
[20] Charles-Florian Picard, Marc Abadie, A. D., Définition des indicateurs de confort. 80, 2020.
[21] Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T., CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563, 2020.
[22] O. A. Olissan, Influence de la fenestration en vitre sur le confort humide : cas de la bande cotiere du benin, Universite de Liège Faculté des Sciences Département de Sciences et Gestion de l’environnement Building Energy Monitoring and Simulation, 2017.
[23] Olesen, B. W., & Parsons, K. C. (2002). Introduction to thermal comfort standards and to the proposed new version of EN ISO 7730. Energy and Buildings, 34 (6), 537–548.
[24] AFNOR., Ergonomie des amniances thermiques, Détermination analytique et interprétation du confort thermique par le calcul des indices {PMV} et {PDD} et par des critère de confort thermique local. Norme Europ{é}enne, Norme Française, 2005.
[25] ASHRAE standard 55: Thermal environmental conditions for human occupancy. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., 2004.
[26] Markov, D. (2003). Standards in Thermal Comfort. New York, October 2002, 63–75.
Cite This Article
  • APA Style

    Karim Toussakoe, Emmanuel Ouedraogo, Bouto Kossi Imbga, Gilbert Nana, Abdoulaye Compaore, et al. (2023). Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault. Advances in Materials, 12(1), 9-16. https://doi.org/10.11648/j.am.20231201.12

    Copy | Download

    ACS Style

    Karim Toussakoe; Emmanuel Ouedraogo; Bouto Kossi Imbga; Gilbert Nana; Abdoulaye Compaore, et al. Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault. Adv. Mater. 2023, 12(1), 9-16. doi: 10.11648/j.am.20231201.12

    Copy | Download

    AMA Style

    Karim Toussakoe, Emmanuel Ouedraogo, Bouto Kossi Imbga, Gilbert Nana, Abdoulaye Compaore, et al. Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault. Adv Mater. 2023;12(1):9-16. doi: 10.11648/j.am.20231201.12

    Copy | Download

  • @article{10.11648/j.am.20231201.12,
      author = {Karim Toussakoe and Emmanuel Ouedraogo and Bouto Kossi Imbga and Gilbert Nana and Abdoulaye Compaore and Florent Pelega Kieno and Sie Kam},
      title = {Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault},
      journal = {Advances in Materials},
      volume = {12},
      number = {1},
      pages = {9-16},
      doi = {10.11648/j.am.20231201.12},
      url = {https://doi.org/10.11648/j.am.20231201.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.am.20231201.12},
      abstract = {The building and construction sector has a significant impact on the environment due to its high consumption of energy resources and increasing levels of emissions, and pollution. According to the United Nations Human Settlements Program (UN-HABITAT), the energy used by buildings and construction accounts for more than a third of the final energy consumed in the world and a quarter of greenhouse gas emissions. African countries such as Burkina Faso are concerned in this reality in the field of building. This is why the major issue in the tropic today is the construction of new buildings with high environmental quality and high energy performance. Today's construction choices will have an impact on future generations. The technique and materials of a building contribute to the health, safety and comfort of people. In the present work, the operating temperature and the PMV/PPD indices in a Nubian vault were determined. The operating temperature and the PMV/PPD indices are indicators of thermal comfort. Thus, the knowledge of these indicators allows to appreciate the state of comfort in the Nubian vault. It is in this perspective that the operating temperature will be determined by the adaptive method. The Fanger model is used for the determination of the PMV/PPD indexes. From the state of sensation obtained, acceptable ambient conditions can be defined for an individual in a tropical zone. As an alternative, the most suitable construction type and building materials could be recommended for each type of climate.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault
    AU  - Karim Toussakoe
    AU  - Emmanuel Ouedraogo
    AU  - Bouto Kossi Imbga
    AU  - Gilbert Nana
    AU  - Abdoulaye Compaore
    AU  - Florent Pelega Kieno
    AU  - Sie Kam
    Y1  - 2023/03/28
    PY  - 2023
    N1  - https://doi.org/10.11648/j.am.20231201.12
    DO  - 10.11648/j.am.20231201.12
    T2  - Advances in Materials
    JF  - Advances in Materials
    JO  - Advances in Materials
    SP  - 9
    EP  - 16
    PB  - Science Publishing Group
    SN  - 2327-252X
    UR  - https://doi.org/10.11648/j.am.20231201.12
    AB  - The building and construction sector has a significant impact on the environment due to its high consumption of energy resources and increasing levels of emissions, and pollution. According to the United Nations Human Settlements Program (UN-HABITAT), the energy used by buildings and construction accounts for more than a third of the final energy consumed in the world and a quarter of greenhouse gas emissions. African countries such as Burkina Faso are concerned in this reality in the field of building. This is why the major issue in the tropic today is the construction of new buildings with high environmental quality and high energy performance. Today's construction choices will have an impact on future generations. The technique and materials of a building contribute to the health, safety and comfort of people. In the present work, the operating temperature and the PMV/PPD indices in a Nubian vault were determined. The operating temperature and the PMV/PPD indices are indicators of thermal comfort. Thus, the knowledge of these indicators allows to appreciate the state of comfort in the Nubian vault. It is in this perspective that the operating temperature will be determined by the adaptive method. The Fanger model is used for the determination of the PMV/PPD indexes. From the state of sensation obtained, acceptable ambient conditions can be defined for an individual in a tropical zone. As an alternative, the most suitable construction type and building materials could be recommended for each type of climate.
    VL  - 12
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Renewable Thermal Energy Laboratory, Joseph KI-ZERBO University, Ouagadougou, Burkina Faso

  • Renewable Thermal Energy Laboratory, Joseph KI-ZERBO University, Ouagadougou, Burkina Faso

  • Renewable Thermal Energy Laboratory, Joseph KI-ZERBO University, Ouagadougou, Burkina Faso

  • Renewable Thermal Energy Laboratory, Joseph KI-ZERBO University, Ouagadougou, Burkina Faso

  • National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso

  • Renewable Thermal Energy Laboratory, Joseph KI-ZERBO University, Ouagadougou, Burkina Faso

  • Renewable Thermal Energy Laboratory, Joseph KI-ZERBO University, Ouagadougou, Burkina Faso

  • Sections