| Peer-Reviewed

Physic and Chemical Transformations for Metal Polymer Nano-composite on Basic Pyrolyzed Polyacrylonitrile (C3H3N)n and Their Impact on Properties

Received: 9 January 2022    Accepted: 25 January 2022    Published: 5 February 2022
Views:       Downloads:
Abstract

In this review, we discuss the basic concepts related to various methods (such as Metal Spraying on Polymers, Microencapsulation…) and the properties of electrical Superparamagnetic applied in polymer-metal nanocomposite films. Within the organic-inorganic hybrid nanocomposites research framework, the field related to metal-polymer nanocomposites is attracting much interest. In fact, it is opening pathways for engineering flexible composites that exhibit advantageous electrical, optical, or mechanical properties. The metal-polymer nanocomposites research field is, now, a wide, complex, and important part of the nanotechnology revolution. So, with this review we aim, starting from the discussion of specific cases, to focus our attention on the basic microscopic mechanisms and processes and the general concepts suitable for the interpretation of material properties and structure–property correlations. The review aims, in addition, to provide a comprehensive schematization of the main technological applications currently in development worldwide. So here we show that nanocomposite films of Metal Polymer Based polyacrylonitrile (PAN) films were manufactured using the method of pyrolysis under incoherent IRradiation and were studied using AFM, XPS, and XRD atomic force microscopy (AFM), Xray photoelectron spectroscopy (XPS), and Xray diffraction (XRD) methods (Some of those methods are widely used in material research study, here we don’t want to introduce them more). The XPS method was used to determine the elemental composition and the chemical and electron states of the elements of the film material. The XRD method showed that the obtained materials contained crystalline inclusions of Mea(CO)b, Me(CO)x(NO)y (where Me is a metal) in an organic matrix of PAN. Then by using experimental methods referred in this article, we can achieve a result of polymer pyrolysis, a metal-polymer nanocomposite is formed with nanoparticles less than 100 nm in size, containing a metal or a metal oxide for the research of material properties.

Published in Composite Materials (Volume 6, Issue 1)
DOI 10.11648/j.cm.20220601.13
Page(s) 17-31
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Physical and Chemical Transformations, Electronic Analyse Method, Metal Polymer Nanocomposite

References
[1] Li X., Quan X., Kutal Ch. Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticle // Scripta Materialia. 2004. V. 50. P. 499.
[2] Nyrup S. B., Poulsen M., Veje E. Electroluminescence from Porous Silicon Studied Experimentally // Journal of Porous Materials. 2000. V. 7. P. 267.
[3] Hulteen, J. C.; Martin, C. R. “A General Template-Based Method for the Preparation of Nanomaterials,” J. Mater. Chem., 1997, 7 (7).
[4] S. W. CHUNG, Y. I. KIM, H. L. PARK and W. J. LEE, J. Mater. Sci.: Mater. Electronics 9 (1998) 383.
[5] Su, X.; Yau Li, S. F.; O’Shea, S. J. Au Nanoparticle- and SilverEnhancement Reaction-Amplified Microgravimetric Biosensor. Chem. Commun. 2001, 755-756.
[6] Hao LY, You M, Mo X, Jiang WQ, Zhu YR, Zhou Y, Hu YA, Liu XM, Chen ZY (2003) Materials Research Bulletin 38 (4), 723-729.
[7] C. Park, J. Yoon, and E. L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns, Polymer, vol. 44, issue. 22, p. 6725, 2003.
[8] Chapman, R.; Mulvaney, P. Electro-optical shifts in silver nanoparticle films. Chem. Phys. Lett. 2001, 349, 358–362.
[9] Talin A. A., Dean K. A., Jaskie J. E. //Solid-State Electronics. 2001. V. 45. P. 963.
[10] Förster, S.; Konrad, M. From self-organizing polymers to nano- and biomaterials. J. Mater. Chem. 2003, 13, 2671.
[11] Richardson J. N., Aguilar Z., Kaval N. et al. //Electrochimica Acta. 2003. V. 48. P. 4291.
[12] Grunes, J.; Zhu, A.; Somorjai, G. A. Catalysis and nanoscience. Chem. Commun. 2003, 0, 2257–2260.
[13] Fang Q., Liu Y., Yin P., Li X. //J. Magnetism and Magnetic Mater. 2001. V. 234. P. 366.
[14] Sergeev G. B., Shabatina T. I., Low temperature. Surface chemistry and nanostructures, Surf. Sci. 2002, 500, p. 628-655. Shabatina T. I., Sergeev G. B.
[15] Zheng Y., Ning R. Effects of nanoparticles SiO2 on the performance of nanocomposites // Materials Letters. 2003. V. 57. P. 2940.
[16] D. Wei, R. Dave, and R. Pfeffer, J. Nanoparticle Research, 4,. 21 (2002). (20) P.
[17] Pavlov I. N. Creation of crops in the sanitary protection zone of aluminum plants in Central Siberia: Abstract of the thesis. dis. …cand. s.-x. Sciences. - Leningrad: LTA, 1989. 20 p.
[18] Cant N. E., Critchley K., Zhang H. -L., Evans S. D. //Thin Solid Films. 2003. V. 31. P. 426.
[19] Avvakumov EG Mechanochemical methods of activation of chemical processes. -Novosibirsk, 1983.
[20] Khodakov G. S. Physics of Grinding. - Moscow, 1972.
[21] Q. Li, E. C. Walter, W. E. van der Veer, B. J. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, and, R. M. Penner. Molybdenum Disulfide Nanowires and Nanoribbons by Electrochemical/Chemical Synthesis. The Journal of Physical Chemistry B 2005, 109 (8).
[22] Maenosomo S., Okubo T., Yamaguchi Y. Overview of nanoparticle array forma- tion by wetcoating. // J. of Nanoparticle Research. 2003. V. 5.
[23] Pebinder P. A. Selected works. Surface Phenomena in Dispersed Systems (Moscow, 1979) (Colloid Chemistry Series).
[24] Pomogailo A. D., Rosenberg A. S., Uflyand I. E. Metal nanoparticles in polymers), Moscow, 2000.
[25] Lin X. M., Wang G. Y., Sorensen C. V., Klaube K. J. //Journal of Physical Chemistry. B. 1999. V. 103. P. 5488.
[26] Dance I. G., Choy A., Scudder I. //Journal of the American Chemical Society, vol. 106, issue. 21, p. 6285, 1984.
[27] Swayambunathan G., Hayes D. H., Schmidt K. et al. //Ibid. 1990. V. 112. P. 6285.
[28] Peyre V., Spalla 0., Belloni L., Nabavi M. Stability of a nanomctric zirconia colloidal dispersion under compression: effect of surface complexation by acetylacetone // J. Colloid lnterf. Sci. 1997. - V. 187, N. 1. - P. 184-200.
[29] Liu S-M, Guo H-Q, Zhang Z-H, Li R, Chen W and Wang Z-G 2000 Physica E 8 174.
[30] Peng X. G., Schlamp M. C., Kdavanich A. V., Alivisatos A. P. //Journal of the American Chemical Society. 1997. V. 119. P. 7019.
[31] Bedja I., Ramat P. V. //J. Phys. Chem. 1995. V. 99. P. 9182.
[32] Qi L., Ma J., Cheng H., Zhao Z. //J. Phys. Chem. B. 1997. V. 101. P. 3460.
[33] Avnir, D.; Braun, S.; Lev, O.; Ottolenghi, M., Enzymes and Other Proteins Entrapped in. Sol-Gel Materials. Chemistry of Materials 1994, 6, (10), 1605-1614.
[34] Pope E. J. A., Braun K., Peterson C. M. //J. Sol-Gel Science. Technology. 1997. V. 8. P. 635.
[35] Pomogailo, A. D., Polymeric Immobilized Metal - complex Catalysts, 1988, 303 p, Moscow Science Publication.
[36] P. A. Rebinder in an investigation of the mechanical properties of the crystals of calcite and rock salt. Uzbekistan science, 1972, vol. 108, issue 1, p. 3.
[37] Malt V. D. Microcapsulation. - M.: Chemistry, 1980.
[38] Hasagawa M., Arai K., Saito S. //Journal of Polymer Science.: Pt A: Polymer. Chemistry. 1987. V. 25. P. 3231.
[39] Nagai K., Ohisi Y., Ishiyama K., Kuramoto N. //Journal of Application of Polymer Science 1989. V. 38. P. 2183.
[40] Warshawsky A., Upson D. A. //Journal of Polymer Science: Pt A: Polymer. Chemistry 1989. V. 27. P. 2963.
[41] Ozin G. A., Andrews M. P., Francis C. G. et al. //Inorganic Chemistry 1990. V. 29. P. 1068.
[42] Mendoza D., Lopez S., Granandos S., Morales F., Escudero R. //Synthetic Metals. 1997. V. 89. P. 71.
[43] Honorable A. E., Sagaidak D. I., Fedoruk G. G. 1997. V. 39. C. 1199.
[44] Morosoff N. C., Barr N. E., James W. J., Stephens R. B. //12 Internat. symp. on plasma chem. /Eds. by J. V. Hebberlleing, D. W. Ernie, J. T. Roberts. –Minnesota (USA), 1995. -V. 1. P. 147.
[45] Smith T. W., Wochick D. //J. Phys. Chem. 1980. V. 84. P. 1621.
[46] Dykman LA, Lyakhov AA, Bogatyrev VA, Shchegolev S. Yu. // Colloid Journal. 1998, vol. 39, p. 1199.
[47] Natanson E. M., Ulberg ZR. Colloid metals and metallopolymers. Kiev: Nauk. dumka, 1971.
[48] Semchikov Yu. D., Khvatova N. L., Elson V. G., Galliulina R. F. // Highly medi-cated. joint A. 1987. V. 29. P. 503.
[49] Sergeev B. M., Sergeev G. B., Prusov A. N. //Mendelev Community. 1998. N 5. P. 1.
[50] Toshima N. //J. Macromol. Science Academic. 1990. V. 27. P. 1125.
[51] Harada M., Asakura K., Toshima N. //J. Physical Chemistry. 1993. V. 97. P. 5103.
[52] The Fractal Approach to Heterogeneous Chemistry Surfaces, Colloids, Polymers/Ed. D. Anvir. N. Y.; Brisbane; Toronto; Singapore, 1997.
[53] Nicholis G., Prigogine I. // Self-organization in nonequilibrium systems. - M., 1979. - P. 545.
[54] Bein Th. //Chemistry of Material. 1992. V. 4. P. 819.
[55] Litvinov IA Study of the effect of thermal effects on the supramolecular structure of polyacrylonitrile: Dis.... Candidate of Chemical Sciences/Institute of Chemistry named after A. Topchiev, Academy of Sciences of the USSR, Moscow, 1967.
[56] Zemtsov L. M., Karpacheva G. P., Kozlov V. V. et al. //Molecular. Mater. 1998. V. 10. P. 141.
[57] Kozlov VV Research and development of technology for colloidal-chemical polishing of the surface of gallium arsenide: Dis.... Candidate of Chemical Sciences/MISIS. - M., 1997.
[58] Kozlov V. V., Karpacheva G. P., Petrov V. S., Lazovskaya E. V. // Vysokomolek. Co unit A. 2001. V. 43. N0 1. P. 23.
[59] Zemtsov L. M., Karpacheva G. P., Kozlov V. V. et al. //Abstr. of presentation of Third Internat. Symp. «Polymers for advanced technologies». –Milan (Italy), 1995. -P. 326.
[60] Efimov O. N., Krinichnaya E. P., Zemtsov L. M. et al. //Abstr. of presentation at the Second Internat. Workshop«Fullerenes and atomic clusters». -St. -Pt. (Russia), 1995. -P. 162.
[61] Shulga Yu. M., Rubtsov V. I., Efimov O. N. et al. // Vysokomolek. connections. S-er. A. 1996. V. 38. N06. P. 989.
[62] Karpacheva G. P., Zemtsov L. M., Kozlov V. V. et al. //Abstr. of lectures and oral and poster contributions at 7 Internat. Conf. on Polymer Supported Reactions in organic c-hemistry. -Wroclaw, 1996. -P. 236.
[63] Zemtsov L. M., Kozlov V. V., Jawhary T. et al. //Book of abstr. of 12 Europ. symp. on polymer spectroscopy. - Lyon, 1996. - P. 85.
[64] Karpacheva G. P., Zemtsov L. M., Kozlov V. V. et al. //Abstract book of Second Intern-at. Interdisciplinary Colloquium on the Sci. and Technol. of the Fullerenes. -Oxford, 1996. -P. 58.
[65] Zemtsov L. M., Karpacheva G. P., Kozlov V. V. et al. //Abstr. of invited lectures and contributed papers. The 3 Internat. workshop in Russia«Fullerenes and atomic clu-sters». -St-Pt (Russia), 1997. -P. 95.
[66] Bagdasarova K. A., Zemtsov L. M., Karpacheva G. P., Perov N. S., Maksimochkina A. V., Dzidziguri É. L., Sidorova E. N. Structure and magnetic properties of metal-carbon nanocomposites based on IR-pyrolized poly(acrylonitrile) and iron. Phys. Sol. State 50 (4) (2008), 750-755.
[67] Kozlov V. V., Korolev Yu. M., Karpacheva G. P., Efimov O. N. // Abstracts of the report. Of the Fourth Russian Symposium "Liquid Crystalline Polymers". - M., 1999. - P. 60.
[68] Kozlov V. V., Petrov V. S., Lazovskaya E. V., Pavlov S. A. Conf. "Modern proble-ms of chemistry of high-molecular compounds: high-efficiency and environment-ally friendly processes for the synthesis of natural and synthetic polymers and ma-terials based on them. " - Ulan-Ude, 2002. -P. 86.
[69] Kozlov V. V., Karpacheva G. P., Petrov V. S. and others // Izv. universities. Electron materials. technology. 2004. N04. P. 45-49.
[70] Karpacheva G. P., Zemtsov L. M., Kozlov V. V. Efimov O. N. //Abstr. of presentati-ons of Second East Asian Symp. on Polymers for Adv. Technol. – Seuol (South Ko-rea), 1999. -P. 61.
[71] Golyshev V. D., Gonik M. A., Tsvetovsky V. B., Frjazinov I. V., Marchenko M. P. // Proc. 3rd International Conference on Single Crystal Growth, Strengthen Problems, Heat and Mass Transfer. Obninsk (Russia), 2000. P. 125—134.
[72] Korolev YM, Kozlov VV, Polikarpov VM, Antipov E. M. // Vysokomolek. com-pounds. Ser. A. 2001. Vol. 43. N011. P. 1933.
[73] Karpacheva G. P., Zemtsov L. M., Bagdasarova K. A., Muratov D. G., Ermilova M. M. and Orekhova N. V. (2005) Nanostructured carbon materials based on IR-pyrolysed polyacrylonitrile, Hydrogen materials scince and chemistry of carbon nanomaterials. ICHMS’2005. IX International Conference, Sevastopol–Crimea – Ukraine, September 05-11, 2005, AHEU, Kiev, 890-891.
[74] Kozhitov L. V., Krapukhin V. V., Karpacheva G. P., Kozlov V. V. // Proceedings of universities. Materials of electronic equipment. 2004. N02. P. 7-10.
[75] Shklovsky BI, Efros AL Electronic properties of doped semiconductors. -M.: Nauka, 1979.
[76] Vysotsky V. V., Roldugin V. I. // Colloid journal. 1998. V. 60. N06. P. 729.
[77] Fistul V. I. // Bulletin of Universities, Materials of Electronic Engineering, 1998, N02, p. 8.
[78] Jiles D. C. //Acta Mater. 2003. V. 51. P. 5907. Han M, Jiles DC, Lee SJ, Snyder JE, Lograsso TA, Schlagel DL. Angular dependence of the unsual first order transition temperature in Gd 5 (Si x Ge 1?x) 4, Presented at the International Magnetics Conference, Boston, Massachusetts, March 30–April 3, 2003. IEEE Transactions on Magnetics 2003; 39 (November) (in press).
[79] Moore J. G., Lochner E. J., Ramsey C. et al. //Angewandte Chemie Intern. Ed. 2003. V. 42. P. 2741-2743.
[80] Esquinazi, T. The Magnetic Properties of Carbon Material /Т. Esquinazi // Phys. Rev. Lett. 2003. -V. 22. N. 91. P. 227201-227203.
[81] Han Y. //Advanced Material. 2003. V. 15. N 12. P. 1719-1722.
[82] Radu Setnescu, Silviu Jipa, Tanta Setnescu et al. //Carbon. 1999. V. 37. N 1. P. 1-6.
[83] Xiao L., Chen Y., Cai R., Huang Z. //Journal of Material Science Lett. 1999. V. 18. P. 833-836.
[84] Cho G. C., Kutt W. //Physics Review. B. 1990. V. 42. N 5. P. 2842-2846.
[85] Chen Y., Huang Z., Cai R., Yu B. //European Polymer Journal. 1998. V. 34. P. 137-141.
[86] Sazanov Yu. N., Mokeev M. V. Novoselova A. V. et al. //Russian Journal of Applied Chemistry. 2003. V. 76. N 3. P. 452-456.
[87] Zhuravleva T. S., Kovalenko S. A., Lozovik Yu. E. et al. //Book of abstr. Fourth Internat. symp. on Polymer for Advanced Technology –Warsaw (Poland), 1997. -P. PII. 28.
[88] Zhuravleva T. S., Zemtsov L. M., Karpacheva G. P. et al., Chemical Physics. 1998. T. 17. N06. P. 150.
[89] Zhuravleva T. S., Kovalenko S. A., Lozovik Yu. E. et al. //Polymers for Adv. Tech-nol. 1998. V. 9. N 10-11. P. 613.
[90] Kozhitov LV, Krapukhin VV, Kozlov VV. et al. // Coll. scientific and practical. Conf. "Nanotechnology-production". - Fryazino (Russia), 2004.
Cite This Article
  • APA Style

    Dmitry Podgorny, Alexey Rodin, Xu Ren. (2022). Physic and Chemical Transformations for Metal Polymer Nano-composite on Basic Pyrolyzed Polyacrylonitrile (C3H3N)n and Their Impact on Properties. Composite Materials, 6(1), 17-31. https://doi.org/10.11648/j.cm.20220601.13

    Copy | Download

    ACS Style

    Dmitry Podgorny; Alexey Rodin; Xu Ren. Physic and Chemical Transformations for Metal Polymer Nano-composite on Basic Pyrolyzed Polyacrylonitrile (C3H3N)n and Their Impact on Properties. Compos. Mater. 2022, 6(1), 17-31. doi: 10.11648/j.cm.20220601.13

    Copy | Download

    AMA Style

    Dmitry Podgorny, Alexey Rodin, Xu Ren. Physic and Chemical Transformations for Metal Polymer Nano-composite on Basic Pyrolyzed Polyacrylonitrile (C3H3N)n and Their Impact on Properties. Compos Mater. 2022;6(1):17-31. doi: 10.11648/j.cm.20220601.13

    Copy | Download

  • @article{10.11648/j.cm.20220601.13,
      author = {Dmitry Podgorny and Alexey Rodin and Xu Ren},
      title = {Physic and Chemical Transformations for Metal Polymer Nano-composite on Basic Pyrolyzed Polyacrylonitrile (C3H3N)n and Their Impact on Properties},
      journal = {Composite Materials},
      volume = {6},
      number = {1},
      pages = {17-31},
      doi = {10.11648/j.cm.20220601.13},
      url = {https://doi.org/10.11648/j.cm.20220601.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.cm.20220601.13},
      abstract = {In this review, we discuss the basic concepts related to various methods (such as Metal Spraying on Polymers, Microencapsulation…) and the properties of electrical Superparamagnetic applied in polymer-metal nanocomposite films. Within the organic-inorganic hybrid nanocomposites research framework, the field related to metal-polymer nanocomposites is attracting much interest. In fact, it is opening pathways for engineering flexible composites that exhibit advantageous electrical, optical, or mechanical properties. The metal-polymer nanocomposites research field is, now, a wide, complex, and important part of the nanotechnology revolution. So, with this review we aim, starting from the discussion of specific cases, to focus our attention on the basic microscopic mechanisms and processes and the general concepts suitable for the interpretation of material properties and structure–property correlations. The review aims, in addition, to provide a comprehensive schematization of the main technological applications currently in development worldwide. So here we show that nanocomposite films of Metal Polymer Based polyacrylonitrile (PAN) films were manufactured using the method of pyrolysis under incoherent IRradiation and were studied using AFM, XPS, and XRD atomic force microscopy (AFM), Xray photoelectron spectroscopy (XPS), and Xray diffraction (XRD) methods (Some of those methods are widely used in material research study, here we don’t want to introduce them more). The XPS method was used to determine the elemental composition and the chemical and electron states of the elements of the film material. The XRD method showed that the obtained materials contained crystalline inclusions of Mea(CO)b, Me(CO)x(NO)y (where Me is a metal) in an organic matrix of PAN. Then by using experimental methods referred in this article, we can achieve a result of polymer pyrolysis, a metal-polymer nanocomposite is formed with nanoparticles less than 100 nm in size, containing a metal or a metal oxide for the research of material properties.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Physic and Chemical Transformations for Metal Polymer Nano-composite on Basic Pyrolyzed Polyacrylonitrile (C3H3N)n and Their Impact on Properties
    AU  - Dmitry Podgorny
    AU  - Alexey Rodin
    AU  - Xu Ren
    Y1  - 2022/02/05
    PY  - 2022
    N1  - https://doi.org/10.11648/j.cm.20220601.13
    DO  - 10.11648/j.cm.20220601.13
    T2  - Composite Materials
    JF  - Composite Materials
    JO  - Composite Materials
    SP  - 17
    EP  - 31
    PB  - Science Publishing Group
    SN  - 2994-7103
    UR  - https://doi.org/10.11648/j.cm.20220601.13
    AB  - In this review, we discuss the basic concepts related to various methods (such as Metal Spraying on Polymers, Microencapsulation…) and the properties of electrical Superparamagnetic applied in polymer-metal nanocomposite films. Within the organic-inorganic hybrid nanocomposites research framework, the field related to metal-polymer nanocomposites is attracting much interest. In fact, it is opening pathways for engineering flexible composites that exhibit advantageous electrical, optical, or mechanical properties. The metal-polymer nanocomposites research field is, now, a wide, complex, and important part of the nanotechnology revolution. So, with this review we aim, starting from the discussion of specific cases, to focus our attention on the basic microscopic mechanisms and processes and the general concepts suitable for the interpretation of material properties and structure–property correlations. The review aims, in addition, to provide a comprehensive schematization of the main technological applications currently in development worldwide. So here we show that nanocomposite films of Metal Polymer Based polyacrylonitrile (PAN) films were manufactured using the method of pyrolysis under incoherent IRradiation and were studied using AFM, XPS, and XRD atomic force microscopy (AFM), Xray photoelectron spectroscopy (XPS), and Xray diffraction (XRD) methods (Some of those methods are widely used in material research study, here we don’t want to introduce them more). The XPS method was used to determine the elemental composition and the chemical and electron states of the elements of the film material. The XRD method showed that the obtained materials contained crystalline inclusions of Mea(CO)b, Me(CO)x(NO)y (where Me is a metal) in an organic matrix of PAN. Then by using experimental methods referred in this article, we can achieve a result of polymer pyrolysis, a metal-polymer nanocomposite is formed with nanoparticles less than 100 nm in size, containing a metal or a metal oxide for the research of material properties.
    VL  - 6
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Institute for New Material and Nanotechnology, National University of Science and Technology "MISIS" (Moscow Institute of Steel and Alloys), Moscow, Russian

  • Institute for New Material and Nanotechnology, National University of Science and Technology "MISIS" (Moscow Institute of Steel and Alloys), Moscow, Russian

  • Institute for New Material and Nanotechnology, National University of Science and Technology "MISIS" (Moscow Institute of Steel and Alloys), Moscow, Russian

  • Sections