| Peer-Reviewed

The Potentiality Biotic- Elicitation with Chitosan or Vitamin C to Achieve Integrated and Sustainable Development for Sage Salvia Officiealis Under Sustainable Agriculture Systems

Received: 22 July 2021    Accepted: 7 August 2021    Published: 24 August 2021
Views:       Downloads:
Abstract

Sage (Salvia Officiealis) an ornamental and medicinal plant, is cultured in sustainable agriculture system world wide especially in Mediterranean region. It has long used and well conducted in traditional and official medicine pharmaceutical, food, cosmetic and perfume industries because in its diverse biologically active compounds. Therefore, field experiment was conducted for two subsequent seasons (2019 and 2020) in factorial split – plot design for design for three replications. The main plot; elicitors; chitosan (CH), vitamin C (VC) and non- elicitor (NE). Whereas, the sub- main plot; (NPK) as chemical fertilizer and bio- organic fertilizer, humic acid (HA), moringa dry leaves extract (ML). The statistical analysis of variance for the recorded analysis of variance for the recorded data revealed that multi- repeating elicitation with (CH), (VC) along (ML), (HA), (NPK) achieve highly significantly positive impacts on biomess leaves yield, g. /m2, essential oil components and antioxidant activity of sage, in which (CH) excel at (VC) along (ML) excel at (VC) along (ML) excel at (HA) excel at (NPK) at both two seasons. These results support the potent CH, VC to achieve integrated sustainable development of sage under biofertilizers (ML), (HA) that excel at chemical fertilizer (NPK) without accreditation on agrochemical microbiocides and / or insecticides.

Published in Journal of Plant Sciences (Volume 9, Issue 4)
DOI 10.11648/j.jps.20210904.14
Page(s) 151-162
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Elicitation, Chitosan, Vitamin C, Aromatic and Medicinal Plant, Biofertilizers

References
[1] Lopresti, A. L. (2017). Salvia (sage): a review of its potential cognitive- enhancing and protective effects. Drugs in R&D, 17 (1), 53-44.
[2] Salamatin, A. A.; Khaliullina, A. S.; Khaziev, R. Sh.(2020). Extraction of aromatic abietane diterpenoids from salivia officinalis leaves by petroleum ether: data resolution analysis Industrial crops and prouducts; 143: 111909.
[3] Martina Jakovljevic Stela Jokic Maja Molnar, Midhat Jasic Jurislav Babic Huska Jukic and Ines Banjari.(2019) Bioactive profile of various Salvia Officiealis L. preparations plants, 8, 55; doi: 10.3390/plants803005.
[4] Sena, T. R. R. DE; et al. (1996). Hearing care and quality of life among workers exposed to pesticides. Ciência & Saúde Coletiva, v. 18, n. 6, p. 1753–1761.
[5] Bouaziz, M.; Yangui, T.; Sayadi, S.; Dhouib, A. (2009). Disinfectant properties of essential oils from Salvia Officiealis L. cultivated in Tunisia. Food Chem. Toxicol. 47, 2755–2760.
[6] Cilerdzic, J.; Aradski, A. A.; Stajic, M.; Vukojevic, J.; (2019). Duletic-Lausevic, S. Do Ganoderma Lucidum and Salvia Officiealis extract exhibit synergistic antioxidant and antineurodegenerative effects Journal of food Measurement and Characterization; 13 (4): 3357-3365.
[7] Abdnezahd, R.; Simbar, M.; Sheikhan, Z.; Mojab, F.; Nasiri, M. (2019). Salvia Officiealis reduces the severity of the premenstrual syndrome Complementary Medicine Reasearch; 26 (1): 39-46.
[8] Durling, N. E., Catchpole, O. J., Grey, J. B., Webby R. F., Mitchell, K. A., Foo, L. Y., Perry, N. B., (2007). Extraction of phenolice and essential oil form dried sage (Salvia Officiealis) using ethanol -water mixtures. Food chem. 101, 1417-1424.
[9] Lu, Y., Yeap Foo L., (2002). Polyphenolice of salvia—a review. phytochemistry 59, 117-140.
[10] Miura, K., Kikuzaki, H., Nakatani, N., (2002). Antioxidant activity of chemical components from sages (Salvia Officiealis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method J. Agric. Food chem. 50, 1845-1851.
[11] Perry, N. B., Anderson, R. E., Brennan, N. J., Douglas, M. H., Heaney, A., J MeGimpesy, J. A., Smallfield, B. M., (1999). Essential oils from dalmatian sage (Salvia Officiealis L.) Varitations among individuals, plant parts, seasons, and sites, J. Agric. Food Chem 47.
[12] Pavic, V.; Jakovlijevic, M.; Molnar, M.; Jokic, S. (2019). Extraction of carosic acid and carnosol from sage (Salvia Officiealis L.) Leaves by supercritical fluid extraction and their antioxidant and antibacterial activity Plants; 8 (1): 16.
[13] Pedro Henrique Gornri: Ana Claudia; Jonathan Fogaca (2019). Albuquerque Silva. Plant elicitation with salicylic acid increases Bioactive compounds content and antioxidant activity in the infusion of Achillea millefolium L. Bioscience Jornal Uberlandia, v, 35, n 1, p 289-295.
[14] Wu, Q. D. and H. D. VanEtten. (2004): Introduction of plant and fungal genes into Pea (Pisum sativum L.) hair roots reduces their ability to produce pisatin and affects their response to a fungal Pathogen. Molecular plant Microbe Interaction; 17 (7): 798-804.
[15] Gao MingBo; Zhang, W.; and R. ChengJiang. (2011): Significantly improved taxuyunnanine C production in cell suspension culture of Taxus chinensis by process intensification of repeated elicitation, sucrose feeding, and in situ adsorption. World Journal of Microbiology and Biotechnology; 27 (10): 2271-2279.
[16] Wang–YaNing; Wei–YaHui; Hao–HaoYong; Ji–JingYuan (2007): Advances in the research of resveratrol. Acta Botanica Boreaali Occidentalia Sinica; 27 (4): 852-857.
[17] Jansen, M. A. K.; Hectors, K. O Brien, N. M.; Guisez, Y. and G. Potters. (2008): Plant stress and human health: do human consumers benefit from UV-B acclimated crops Plant Science; 175 (4): 449-458.
[18] Edreva, A.; Velikova, V.; Tsonev, T.; Dagnon, S.; Gurel, A.; Aktas, L. and E. Gesheva. (2008): Stess protective role of secondary metabolites: diversity of functions and mechanisms. General and Applied Plant Physiology, 341 (1/2): 67-78.
[19] Treutter, D. (2005): Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology; 7 (6): 581-591.
[20] Marpelli, S.; Brambilla, I. M.; Radyukina, N. L.; Ivanov, Yu. V.; Kartashov, A. V.; Reggian, R. and VI. V. Kuznetsov. (2008): Free and bound polamines changes in different plants as a consequence of UV – B light irradiation. General and Applied Plant Physiology; 34 (1/2): 55- 66.
[21] Ferreira, T. P. deS.; Veloso, R. A.; Santos, G. R. dos; Santos, L. P. dos; Ferriet, T. P. de S.; Barros, A. M.; Possl, R. D.; Aguiar, R. W. de S. (2018). Enzymatic activity and elicitor of phytoalexins of lippie sidoides Cham and endophytic fungi. African journal of Biotechnology 17 (15): 521-530.
[22] Ersilia Alexa, Renata Maria Sumalan, Corina Danciu, Diana Obistioiu, Monica Negrea, Mariana-Atena Poiana, Cristian Rus, (2018), Isidora Radulov, Georgeta Pop and Cristina Dehelean Synergistic Antifungal, Allelopatic and Anti-Proliferative Potential of Salvia Officiealis L., nd Thymus vulgaris L. Essential OilsMolecules 23, 185.
[23] Sonker, N., Pandey, A. K. and Singh, P. (2015). Efficiency of Artemisianilagirica (Clarke) Pamp essential oilas amycotoxicant against post harvest mycobiota of tablegrapes. J.Sci.FoodAgric. 95, 1932–1939.
[24] Noha Khalil, Mostafa Fekry, Mokhtar Bishr, Soheir El- Zalabanib, Osama Salamaa. (2018). Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris Plant Physiology and Biochemistry 123, 65–74 L.
[25] Alcala-Orzco, M.; Caballero-Gallardo, K.; Stashenko, E. E.; Olivero-Verbel, J. (2019). Repellent and fumigant action of the essential oils from Elettaria cardamomum (L.) Maton, Salvia offcinalis (L.) Linnaeus, and Lippia origanodies (V.) Kunth against Trilbolium castaneum and Ulomodies dermestoides Journal of Essential Oil-Bearing Plants; 22 (2): 18-30.
[26] Priviteria, G.; Luca, T.; Castorina, S.; Passanisi, R.; Ruberto, G.; Napoli, E. (2019). Anticancer activity of Salvia Officiealis essential oil and its principal constitunets against hormone-dependent tumor cells Asian Pacific Journal of Tropical Biomedicine; 9 (1): 24-28.
[27] Misra, N., Misra, R., Mariam, A., Yusuf, K., Yusuf, L., (2014). Salicylic acid alters antioxidant and phenolics metabolism in Catharanthus roseus grown under salinity stress. Afr. J. Tradit., Compl. Altern. Med. 11, 118–125.
[28] Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ, Fokou PVT, Sharifi-Rad M, Mahady GB, et al. (2017). Medicinal plants used in the treatment of tuberculosisethnobotanical and ethnopharmacological approaches. Biotechnol Adv. S 0734–9750 (17) 30077–0.
[29] Elansary HO, Szopa A, Kubica P, Ekiert H, Ali HM, Elshikh MS, et al. (2018). Bioactivities of traditional medicinal plants in Alexandria. Evid-Based Complementary Altern Med.: 1463579.
[30] Tettey, C. O.; Ocloo, A.; Nagajyothi, P. C. N.; Lee, K. D. (2014). An in vitro analysis of antiproliferative and antimicrobial activities of solvent fractions of Taraxacum officinale (Dandelion) leaf. Journal of Applied Pharmaceutical Science; 4 (3): 41-45. 24.
[31] Ovadje P, Chatterjee S, Griffin C, Tran C, Hamm C, Pandey S. (2011). Selective induction of apoptosis through activation of caspase-8 in human leukemia cells (Jurkat) by dandelion root extract. J. Ethnopharmacol. 133: 86-91.
[32] Dixon, R. A., (2001). Natural products and plant disease resistance. Nature 411, 843–847.
[33] Oksman-Caldentey, K. M., Inze, D., (2004). Plant cell factories in the post-genomic era: new No table of figures entries found. ways to produce designer secondary metabolites. Trends in Plant Science 99.
[34] Pereira, L. A., & Raimunda, A. D. S. (2016). The intensive use of pesticides—The new face of the agrarian question. Okara: Geografia em Debate, 10, 185-194.
[35] Mohamedy, R. S. R.; Mohamed, S. K, (2018). Effect of Moringa oleifera seed oil, roor and leave extracts on growth of major pathogenic fungi of tomato, green bean and potato in vitro. International Journal of Agricultural Technology, 14 (2): 505-520.
[36] Tarek El- Sayed, S. A. 2Bosila, H. A. and 1El- Sayed, S. A, (2020). Apprasing elicitation potency by electric current corporated with chitosan and Nono- selenium to broost quale- quantitative essential oil yield production in thyme. Asian Journal of Science and Technology Vol. 11, Issue, 01, pp. 10712-10721.
[37] Somayeh Ghahari, Heshmatollah Alinezhad, Ghorban All Nematzadeh (2018). Phytochemical Antioxidant and Biological Activities of the Essential Oil of Astragalus alopecurus pall. Fruits from northern iran. Journal of Essential oil Bearing plants.
[38] Lopez-Reyes, J. G.; Spadaro, D.; Gullino, M. L.; Garibaldi, A. (2010) Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour Fragr. J. 25, 171–177.
[39] Plaza, P.; Torres, R.; Usall, J.; Lamarca, N.; Vinas, I. (2004). Evaluation of the potential of commercial post-harvest application of essential oils to control citrus decay. J. Hortic. Sci. Biotechnol. 79, 935–940.
[40] Sciences, B.; Ziedan, E. H. E.; Farrag, E. S. H. (2008). Fumigation of peach fruits with essential oils to control postharvest decay. Res. J. Agric. Biol. Sci. 4, 512–519.
[41] Sarkhosh, A.; Vargas, A. I.; Schaffer, B.; Palmateer, A. J.; Lopez, P.; Soleymani, A.; Farzaneh, M. (2017). Postharvest management of anthracnose in avocado (Persea americana Mill.) fruit with plant-extracted oils. Food Packag. Shelf Life, 12, 16–22.
[42] Šegvi´c Klari´c, M.; Kosalec, I.; Masteli´c, J.; Piecková, E.; Pepeljnak, S. (2007). Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 44, 36–42.
[43] Houda Banani, Leone Olivieri, Karin Santoro, Angelo Garibaldi, Maria Lodovica Gullino and Davide SpadaroThyme and Savory. (2018). Essential Oil Efficacy and Induction of Resistance against Botrytis cinerea through Priming of Defense Responses in Apple Foods 2018, 7, 11.
[44] Servili, A.; Feliziani, E.; Romanazzi, G. (2017). Exposure to volatiles of essential oils alone or under hypobaric treatment to control postharvest gray mold of table grapes. Postharvest Biol. Technol. 133, 36–40.
[45] Kaskin, N. and B. Kunter. (2009): The effects of callus age, UV irradiation and incubation time on trans resveratol production in grapevine callus cultures. Tarim – Billileri - Dergist; 15 (1) 9-13.
[46] Poulev, A. et al. (2003). Elicitation, a new Window into plant Chemodiversity and Phytochemical drug discovery. J. Med chem., united states, V. 46, p. 2542-2547, may.
[47] Perez, M. G. F. et al. (2014). Effect of chemical elictors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusion. Food chem, Barking, V. 156, p. 273-278, aug.
[48] Namil, s. et al. (2014). Effects of UV-B radiation on total phenolic, flavonoid and hypericin contents in Hypericum retusm Aucher grown under n vitro conditions. Nat Prod Res, England, V. 28, n. 24, p. 2286-2292, aug.
[49] Michał Świeca.(2016). elicitation and treatment with precursors of phenolics synthesis improve low-molecular antioxidants and antioxidant capacity of buckwheat sprouts Acta Sci. Pol. Technol. Aliment., 15 (1), 17–28. DOI: 10.17306/J.AFS.1.2.
[50] Kiran Sharma, Rasheeduz Zafar.(2016). Optimization of methyl jasmonate and-cyclodextrin for enhanced duction of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures Plant Physiology and Biochemistry 103, 24e30.
[51] Nieves Baenas, Cristina García-Viguera and Diego A. Moreno. (2014). Elicitation: A Tool for Enriching the Bioactive Composition of Foods Molecules. 19, 13541-13563.
[52] Zhou ML. Bai DQ. Tang Y. Zhu xm Shao JR (2012). Genetic diversty off our new species related to southwestern Sichuan buckwheats as reveaied by karyotype ISSR and allozyme characterization plant Evol. 298: 751-759.
[53] Tarek Elsayed S Ahamed, and El- Sayed, S. A. (2018). Verification and Validation of Dandelion (Taraxacum officinal) Seeds- Gamma Irradiated under Elicitation with Nano- and Micro- Zinc for Potential Optimization Biomass and enhancing Phenolics, Flavonoids and Antioxidant Activity. volum 3, Issue 10.
[54] Tarek Elsayed Sayed Ahamed (2019). Bioprospecting Elicitation with Gamma Irradiation Combine with Chitosan to Enhance, Yield Production, Bioactive Secondary Metabolites and Antioxidant Activity for Saffron Journal of Plant Sciences 7 (6): 137-143.
[55] Agrawal N, Sharma S (2013).: Appraisal of Garden Cress (LepidiumsativumL.) and Product Development As An All Pervasive And Nutrition Worthy Food Food Stuff Annals. Food Science and Technology Volume 14, Issue 1.
[56] Rawat, J, M.; Balwant Rawat; Susmita Mishra. (2014). Effect of elicitation on picrtin and picrotoxinin oroduction from in vitro products of kurrooa African journal of Biotechnology; 13 (51): 4612-4619.
[57] Geunen, S.; and J. M. C. Geunen.:(2013). Influence of photoperiodism on the spatio- temporal accumulation of steviol glycosides in Stevia rebaudaiana (Bertoni). Plant, Science; 198: 72-82, 2013.
[58] Adam, A.; Jourdan, E.; Pgena, M.; Duby, F.; Domes, J. and P. Thonart. (2005): Resistance induced in cucumber and tomato by a non-pathogenic Pseudomonas putida strain-Parasitical; 6 (2/4): 13-22.
[59] Hussain S, Fareed, S Ansari, S, Rahman, A., Ahmad, I. Z., saeed, M., 2012. Gurrent approaches toward production of secondry plant metabolits. J. pharm. Bioallied Sci. 4, 10-20.
[60] Aardr Kachroo; Vincelli, P,; Pradeep Kachroo,(2017). Signalis mechanisms underiying resisnce responses what hav we leaned, and how is it applid. Phytopathology; 107 (12): 1452-1461.
[61] Akash Hidangmayum; Padmanabh Dwivedi; Deepmala Katiyar; Akhouri Hemataranjan. (2019). Application of chitosan on plant responses with special refernce to abiotic stress physiology and Molecular Biology of plants; 25 (2): 313-326.
[62] Sathiyabama, M.; Akila, G.; Einstein Charles, R. (2014). Chitosan- induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch. Phytopathol. Plant Prot. 47, 1777–1787.
[63] Valletta, A., De Angelis, G., Badiali, C., Brasili, E., Miccheli, A., Di Cocco, M. E., Pasqua, G., (2016). Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep. 35 (5), 1009e1020.
[64] Katiyar D, Hemantaranjan A, Singh B (2015). Chitosan as promising natural compound to enhance potential physiological responses in plant: a review. Indian J plant physiol 20 (1): 1-9.
[65] Zheng Fangliang; Zheng WenWen; LiLiMei; Pan SiMing; Liu MeiChen; Zhang WeiWei; Liu HongSheng; Zhu ChunYu. (2017). Chitosan controls postharvest decay and elicits response in kiwifruit Food and Bioprocess Technology; 10 (11): 1937-1945.
[66] Zagzog, O. A.; Gad, M. M.; Hafez, N. K. (2017). Effect of Nano- chitosan on Vegetative Growth, Fruiting and Resistance of Malformation of Mango. Trends Hortic. Res. 6, 673–681.
[67] El-Ghaouth, A., Arul, J., Grenier, J., Benhamou, N., Asselin, A., Belanger, R., (1994). Effect of chitosan on cucumber plants: suppression of Pythium aphinodermatum and induction of defense reactions. Phytopathology 84, 313–320.
[68] Romanazzi, G., Nigro, F., Ippolito, A., Di Venere, D., Salerno, M., (2002). Effects of pre- and postharvest chitosan treatments to control storage grey table grapes. J. Food Sci. 67, 1862–1867.
[69] Aziz, A., Trotel-Aziz, P., Dhuicq, L., Jeandet, P., Couderchet, M., Vernet, G., (2006). Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96, 1188–1194.
[70] Trotel-Aziz, P., Couderchet, M., Vernet, G., Aziz, A., (2006). Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur. J. Plant Pathol. 114, 405–413.
[71] Ruiz-García, Y., Gómez-Plaza, E., (2013). Elicitors: a tool for improving fruit phenolic content. Agriculture 3, 33–52.
[72] Tarek El- Sayed, S. A and El- Sayed, S. A. (2021). Potential Assessment Multi-Repeating abiotic / biotic Motivation coincide Biofertilizers to Optimize Black Cumin (Nigella sativa L.) Seed Yield Production and QualityAgricultural Sciences, 2021, 12, 69-83.
[73] Tarek Elsayed S Ahamed, and El- Sayed, S. A., (2020). Verifying potential of Moringa oleifera Extract Application as Bio- Fertilizer for Basil Plants (Ocimum basilicum L.) Elicited with Gamma Irradiation and / or Nano- Zinc Oxide to Ameliorate Biomass Quantity and Quality Asian Journal of Science and Technology Vol. 11, Issue, 04, pp. 10888-10897.
[74] Ben-Shalom, N.; Fallik, E. (2003). Further suppression of Botrytis cinerea disease in cucumber seedlings by chitosan-copper complex as compared with chitosan alone. Phytoparasitica 2003, 31, 99–102.
[75] Algam, S.; Xie, G.; Li, B.; Yu, S.; Su, T.; Larsen, J. (2010). Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. J. Plant Pathol. 92, 593–600.
[76] Escudero, N.; Lopez-Moya, F.; Ghahremani, Z.; Zavala- Gonzalez, E. A.; Alaguero-Cordovilla, A.; Ros-Ibañez, C.; Lacasa, A.; Sorribas, F. J.; Lopez-Llorca, L. V. (2017). Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Front. Plant Sci. 8.
[77] Bondok, A. (2015). Response of Tomato Plants to Salicyli c Acid and Chitosan under Infection with Tomato mosaic virus. Am.-Eur. J. Agric. Environ. Sci. 15, 1520–1529.
[78] Firmansyah, D. (2017). Use of Chitosan and Plant Growth Promoting Rhizobacteria to Control Squash Mosaic Virus on Cucumber Plants. Asian J. Plant Pathol. 11, 148– 155.
[79] Li, Y.; Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Li, K.; Li, P. (2016). Preparation, Characterization, and Insecticidal Activity of Avermectin-Grafted-Carboxymethyl Chitosan. BioMed Res. Int.
[80] Nasiri, Y.; Zandi, H.; Morshedloo, M. R. (2018). Effect of Salicylic and ascorbic acid on essential oil content and composition of dragonhead (Dracocephalum moldavica L.) under organic farming Journal of essential Oil-Bearing Plants;.21 (2): 362-373.
[81] Lazzari, F. M., & Souza, A. S. (2017). Green Revolution: Impacts on Traditional Knowledge (pp. 1-16). 4o Congresso Internacional de Direito e Contemporaneidade.
[82] Bombardi, L. M. (2019). Geografia do uso de agrotóxicos no Brasil e conexões com a União Europeia. 2. ed. São Paulo: FFLCH – USP.
[83] Nasrala Neto, E.; et al. (2014). Health surveillance and agribusiness: the impact of pesticides on health and the environment. Danger ahead! Ciência & Saúde Coletiva, v. 19, n. 12, p. 4709–4718.
[84] Rattner, H.; Franco Netto, G (2009). Environment, health and sustainable development. Ciência & Saúde Coletiva, v. 14, n. 6, p. 1965–1971.
[85] Pignati, W. A. et al. (2017). Distribuição espacial do uso de agrotóxicos no Brasil: uma ferramenta para a Vigilância em Saúde. Ciência & Saúde Coletiva, v. 22, n. 10, p. 3281–3293.
[86] Abreu, P. H. B. DE; Alonzo, H. G. A. (2014). Rural work and health risks: a review into de “safe use” of pesticides in Brazil. Ciência & Saúde Coletiva, v. 19, n. 10, p. 4197–4208, Out.
[87] El-Serafy, R. S., (2015). Effect of Silicon and Calcium on Productivity and Flower Quality of Carnation. Ph.D. Thesis. Fac. Agric. Tanta Univ., Egypt. El-Serafy, R. S., 2018. Growth and productivity of roselle (Hibiscus sabdariffa L.) as affected by yeast and humic acid. Sci. J. Flowers Ornamental Plants 5 (2), 195–203.
[88] Caradonia, F., Battaglia, V., Righi, L., Pascali, G., La Torre, A., (2018). Plant biostimulant regulatory framework: prospects in Europe and current situation at international level. J. Plant Growth Regul. 38 (2), 438–448. basillicum L. plants. Alex. J. Agric. Res. 60 (1), 1–16.
[89] El-Serafy, R. S., (2019). Silica nanoparticles enhance sphysio-biochemical characters and postharvest quality of Rosa hybrid L. cut flowers. J. Hortic. Res. 27 (1), 47–54.
[90] Rashmi, K. R., Earanna, N., Vasundhara, M., (2008). Influence of biofertilizers on growth, biomass and biochemical constituents of Ocimum gratissimum L. Biomed 3 (2), 123–130.
[91] Azzaz, N. A., Hassan, E. A., Hamad, E. H., (2009). The chemical constituent and vegetative and yielding characteristics of fennel plants treated with organic and bio-fertilizer instead of minera fertilizer. Aust. J. Basic Appl. Sci. 3 (2), 579–587.
[92] El-Naggar, A. H. M., Hassan, M. R. A., Shaban, E. H., Mohamed, M. E. A., (2015). Effect of organic and biofertilizers on growth, oil yield and chemical composition of the essential oil of Ocimum basillicum L. plants. Alex. J. Agric. Res. 60 (1), 1–16.
[93] Yousefzadeh, s., s. a. m. Modarres sanavy, m. Govahi, o. s. Khatamian oskooie, (2015). Effect of organic and chemical fertilizer on soil characteristics and essential oil yield in dragonhead. Journal of Plant Nutrition 38 (12), 1862-1876.
[94] Sakhubai H. (2016). Tummaramatti, Laxminarayana Hegde. Effect of Bio – Fertilizers on Growth, Yield and Quality of Buckwheat (Fagopyrum esculentum Moench). Environment & Ecology 34 (3B): 1258-1261.
[95] Khalil Karimzadeh Asl · Mehrnaz Hatami (2019). Application of zeolite and bacterial fertilizers modulates physiological performance and essential oil production in dragonhead under different irrigation regimes Acta Physiologiae Plantarum 41: 17.
[96] Adekiya, A. O.; Agbede, T. M.; Aboyeji, C. M.; Dunsin, O.; Ugbe, j. o. (2019). Green manures and NPK fertilizer effect on soil properties, growth, yield mineral and vitamin C composition of okra (Abelmoschusesculentus (l.) Moench). Journal of the Saudi of Agricultural Sciences; 18 (2) 218-223.
[97] Yadav, K, K., (2019). Smritkana Sarkar. Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Envirornment and Ecology; 37 (1): 89 – 93.
[98] Kamlesh Kumar Yadav, (2019). Smritikana SarkarBiofertilizers, Impact on Soil Fertility and Crop Productivity under Sustainable AgricultureEnvironment and Ecology 37 (1): 89—93, January—March.
[99] Xu Feng, Yongqing Xu, Dan Liu, Lina Peng, Jiamin Dong, Shukuan Yao, Yanzhong Feng, Zhe Feng, Fenglan Li, (2020). Baozhong Hu. Effects of organic cultivation pattem on Tomato production plant growth characteristics quality disease resistanc and soil physical and chemical properties. Acta Sci Pol. Hortorum Cultus, 19 (1) 71–84.
[100] Mona M. Abdalla (2013). The potential ofMoringaoleiferaextract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Erucavesicari subsp. Sativa) plants. Vol. 5 (3), pp. 42-49.
[101] Melesse A., and K. Berihn. (2013). Chemmical and mineral compositions of pods of Moringa stenopetala and Moringa olei fera cultivated in the lowland of Gamogfa Zone,. Journal of Environmental Occupational Science 2: 33-38.
[102] Aslam M, Anwar F, Nadeem R, Rashid U, Kazi TG, Nadeem M, 92005). Mineral Composittion of Morenga oleifera leaves and pods from Different Regions of Punjab, Pakistan Asian J plant Sci.
[103] Manzoor, M., F, Anwar, T, Iqbal, and M. Bhanger. (2007). Physico-chemical characterization of Moringa concaensis seeds and seed oil. Journal of American Oil Chemistry Society 64: 413-19.
[104] Suaib Luqman, Suchita Srivastava, Ritesh Kumar, Anil Kumar Maurya, and Debabrata Chanda. (2012). Experimantal Assessment of Moringa olifera and Fruit ror Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vino Assays. Evidence- Bassed Complementary and Alternative Medicine Volum Article ID 519084, 12 pages.
[105] Tsegaye Mega Kaba; Kyusse Gudishe Goroya. (2109). Determination of concenttation of some essential and heavy metals in roots of Morenga stnopetala using Flame Atomuic Absorption Spectroscopy. Journal of Medicinal plants Resesrch; 13 (4): 89-95.
[106] Zaker, M. (2016). Natural plant pridcts as Eco-frindiy Fungicides for plant Diseases control- A Revioew. The Agricultrists 14: 134-141.
[107] Nouman W, Siddiqui MT, Basra SMA (2011). Moringa oleifera Ieaf extract: An innovative priming tool for rangeland grass. Turk. J. Agric. For. TUBITAK 35: 1-11.
[108] Marwad, A. R. M. A. (2018). Using Moringa oleifera extract as biostimulant enhancing the growth, yield and nutrients accumulation of pea plants. Journal of plant Nutrition; 41 (4): 425-431.
[109] Hasan, M.; Bae HanHong. (2017). An overview of stress-induced resveratrol synthesis in grapes: perspectives for resveratrol-enriched grape products. Molecules; 2017, 22 (2): 294.
[110] Kazam Ali; Amna Khan; Muhammad Sagheer; Hanit, C, M,; Astif, H, M,; Yasir, T, A,; Atti Wasaya. (2019). Biological activities of medicinal plants against the population of trgoderma granarh. Zeitschrift rur Arznei-& Gerwurzplfanzen; 2019, 24 (1): 38-44.
[111] Canellas. L., P., Olivares F, L., Aguiar, N. O., Jones D. L., Nebbioso, A., Mazzei, P., Piccolo, A (2015) Humic and fulvic acid as biostimulants in horticulture. Acta Sci. pol hortorum Culus 196, 15 – 27.
[112] Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). The Use of Biostimulants for Enhancing Nutrient Uptake. Advances in Agronomy, 13 0, 141-174.
[113] Olivares, F. L. (2017). Plant growth promoting bacterium and humic substances: Crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 4, 1.
[114] Costa, V. C. O. (2008). Chemical composition and modulation of bacterium l drug resistance of the essential oil from the leaves of Rollinia leptopetala R. E. Fries. Revista Brasileira de Farmacognosia, 18, 245-248.
[115] Zaheer Ahmad, Qudrat Ullah Khan, Abdul Qadoos, Muhammad Jamil Khan, Abida Saleem and Zarina Bibi. (2020). Humic acid, an effective amendment used for amelioration of Phosphatic fertilizer and enhancing maize yield Pure Appl. Biol., 9 (1): 750-759, March.
[116] Cicco, N., M. T. Lanorte, M. Paraggio, M. Viggiano, and V. Lattanzio. (2009). A reproducible, rapid and inexpensive Folin-Ciocalteumicromethod in determining phenolics of plant methanol extracts. Microchem. J. 91: 107-110.
[117] Wu, C. H., Y. H. Dewir, E. J. Hahn, and K. Y. Paek. (2006). Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. J. Plant Biol. 49: 193-199.
[118] Akkol EK, Goger F, Kossar M, Baser KHC (2008) Phenolic compos-tion and biological activites of Salvia halophile and Slvia vir- gata from Turkey, Food Chem 108 P 942-649.
[119] ] Chan EWC, Lim YY, Omar M (2007). Antioxidant and antibacterial activity of leaves of Etlingera species (Zingiberaceae) in Peninsular Malaysia. Food Chem., 104 (4): 1586-1593.
[120] Said-Al Ahl, H., Gendy, A. G., & El, E. A. O. (2016). Humic acid and indole acetic acid affect yield and essential oil of dill grown under two different locations in Egypt. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 146-157.
[121] Hendawy, S. F., Hussein, M. S., El-Gohary, A. E., & Ibrahim, M. E. (2015). Effect of Foliar Organic Fertilization on the Growth, Yield and Oil Content of Mentha Piperita Var. Citrata. Asian Journal of Agricultural Research, 9, 237-248.
[122] Freitas, T. F. S. de; Stout,, M. J.; Sant Ana, J. Effects of exogenous methyl jasmonate and salicylic acid on rica resistance to Oebalus pugnax. Pest Management Science; 2019. 75 (3): 744-752.
Cite This Article
  • APA Style

    Tarek Elsayed S. A., El Sayed S. A. (2021). The Potentiality Biotic- Elicitation with Chitosan or Vitamin C to Achieve Integrated and Sustainable Development for Sage Salvia Officiealis Under Sustainable Agriculture Systems. Journal of Plant Sciences, 9(4), 151-162. https://doi.org/10.11648/j.jps.20210904.14

    Copy | Download

    ACS Style

    Tarek Elsayed S. A.; El Sayed S. A. The Potentiality Biotic- Elicitation with Chitosan or Vitamin C to Achieve Integrated and Sustainable Development for Sage Salvia Officiealis Under Sustainable Agriculture Systems. J. Plant Sci. 2021, 9(4), 151-162. doi: 10.11648/j.jps.20210904.14

    Copy | Download

    AMA Style

    Tarek Elsayed S. A., El Sayed S. A. The Potentiality Biotic- Elicitation with Chitosan or Vitamin C to Achieve Integrated and Sustainable Development for Sage Salvia Officiealis Under Sustainable Agriculture Systems. J Plant Sci. 2021;9(4):151-162. doi: 10.11648/j.jps.20210904.14

    Copy | Download

  • @article{10.11648/j.jps.20210904.14,
      author = {Tarek Elsayed S. A. and El Sayed S. A.},
      title = {The Potentiality Biotic- Elicitation with Chitosan or Vitamin C to Achieve Integrated and Sustainable Development for Sage Salvia Officiealis Under Sustainable Agriculture Systems},
      journal = {Journal of Plant Sciences},
      volume = {9},
      number = {4},
      pages = {151-162},
      doi = {10.11648/j.jps.20210904.14},
      url = {https://doi.org/10.11648/j.jps.20210904.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jps.20210904.14},
      abstract = {Sage (Salvia Officiealis) an ornamental and medicinal plant, is cultured in sustainable agriculture system world wide especially in Mediterranean region. It has long used and well conducted in traditional and official medicine pharmaceutical, food, cosmetic and perfume industries because in its diverse biologically active compounds. Therefore, field experiment was conducted for two subsequent seasons (2019 and 2020) in factorial split – plot design for design for three replications. The main plot; elicitors; chitosan (CH), vitamin C (VC) and non- elicitor (NE). Whereas, the sub- main plot; (NPK) as chemical fertilizer and bio- organic fertilizer, humic acid (HA), moringa dry leaves extract (ML). The statistical analysis of variance for the recorded analysis of variance for the recorded data revealed that multi- repeating elicitation with (CH), (VC) along (ML), (HA), (NPK) achieve highly significantly positive impacts on biomess leaves yield, g. /m2, essential oil components and antioxidant activity of sage, in which (CH) excel at (VC) along (ML) excel at (VC) along (ML) excel at (HA) excel at (NPK) at both two seasons. These results support the potent CH, VC to achieve integrated sustainable development of sage under biofertilizers (ML), (HA) that excel at chemical fertilizer (NPK) without accreditation on agrochemical microbiocides and / or insecticides.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Potentiality Biotic- Elicitation with Chitosan or Vitamin C to Achieve Integrated and Sustainable Development for Sage Salvia Officiealis Under Sustainable Agriculture Systems
    AU  - Tarek Elsayed S. A.
    AU  - El Sayed S. A.
    Y1  - 2021/08/24
    PY  - 2021
    N1  - https://doi.org/10.11648/j.jps.20210904.14
    DO  - 10.11648/j.jps.20210904.14
    T2  - Journal of Plant Sciences
    JF  - Journal of Plant Sciences
    JO  - Journal of Plant Sciences
    SP  - 151
    EP  - 162
    PB  - Science Publishing Group
    SN  - 2331-0731
    UR  - https://doi.org/10.11648/j.jps.20210904.14
    AB  - Sage (Salvia Officiealis) an ornamental and medicinal plant, is cultured in sustainable agriculture system world wide especially in Mediterranean region. It has long used and well conducted in traditional and official medicine pharmaceutical, food, cosmetic and perfume industries because in its diverse biologically active compounds. Therefore, field experiment was conducted for two subsequent seasons (2019 and 2020) in factorial split – plot design for design for three replications. The main plot; elicitors; chitosan (CH), vitamin C (VC) and non- elicitor (NE). Whereas, the sub- main plot; (NPK) as chemical fertilizer and bio- organic fertilizer, humic acid (HA), moringa dry leaves extract (ML). The statistical analysis of variance for the recorded analysis of variance for the recorded data revealed that multi- repeating elicitation with (CH), (VC) along (ML), (HA), (NPK) achieve highly significantly positive impacts on biomess leaves yield, g. /m2, essential oil components and antioxidant activity of sage, in which (CH) excel at (VC) along (ML) excel at (VC) along (ML) excel at (HA) excel at (NPK) at both two seasons. These results support the potent CH, VC to achieve integrated sustainable development of sage under biofertilizers (ML), (HA) that excel at chemical fertilizer (NPK) without accreditation on agrochemical microbiocides and / or insecticides.
    VL  - 9
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Radioisotopes Department, Nuclear, Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt

  • Radioisotopes Department, Nuclear, Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt

  • Sections