Research Article | | Peer-Reviewed

Assessing the Potential of Extra-Early Maturing Multiple Stress-tolerant Maize Hybrids Under Different Rates of Nitrogen

Received: 23 January 2024    Accepted: 12 February 2024    Published: 28 February 2024
Views:       Downloads:
Abstract

Decline in soil fertility is a major constraint to maize production. This study aimed to assess the agronomic performance of improved maize varieties under different nitrogen rates to identify low nitrogen tolerant varieties. Five multiple stress-tolerant maize hybrids, developed by maize improvement program of the International Institute of Tropical Agriculture (IITA), and an open-pollinated variety used as check were evaluated under three levels nitrogen at two locations during 2019 growing season. The experiment was laid out in a split-plot experiment with three replications at each location. Nitrogen rates and varieties were the main and secondary factors, respectively. Data collected on grain yield and its related traits and were subjected to analysis of variance at 5% level of significance. The average grain yield of the six varieties under different nitrogen levels ranged from 2.2 t/ha at 0 kgN/ha in Angaradébou to 5.3 t/ha at 76 kgN/ha in Komkoma. Hybrid TZEEQI 342 × TZEEQI 7 showed high grain yield (4.0 t/ha) across the two agro-ecologies while varieties TZEE-W Pop STR QPM Co × TZEEQI 7 (3.7 t/ha) and TZdEEI 91 × TZEEI 21 (3.6 t/ha) had comparable grain yield. These hybrids were also less susceptible to nitrogen stress. They are the promising genotypes for Angaradébou localities while farmers around Komkoma should continue to cultivate TZEE-W Pop DT STR QPM.

Published in Journal of Plant Sciences (Volume 12, Issue 1)
DOI 10.11648/j.jps.20241201.17
Page(s) 43-54
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Maize Production, Nitrogen Use Efficiency, Plant Nutrition, Multiple Stress-tolerant Maize Hybrids

References
[1] DSA/ MAEP. 2021. https://dsa.agriculture.gouv.bj Consulted on 15/06/23
[2] Houngbo N. E. 2015. Diversité et critères d’adoption des cultivars de maïs (Zea mays L.) dans le village Zounnou, Centre Bénin. J. Appl. Biosci. 96: 9094 – 9101, ISSN 1997–5902. https://doi.org/10.4314/jab.v96i1.1
[3] Hongbete, F., Kindossi, J. M., Hounhouigan, J. D., & Nago, M. C. 2017. Production et qualité nutritionnelle des épis de maïs frais bouillis consommés au Bénin. Int. J. Biol. Chem. Sci. 11(5): 2378–2392. https://doi.org/10.4314/ijbcs.v11i5.34
[4] Guedou, M. S. E.; Houndonougbo, M. F.; Chrysostome, C. A. A. M. et Mensah, G. A., 2015. Le maiis grain et ses sous-produits en alimentation de volailleau Bénin: synthèse bibliographique. Annales des sciences agronomiques 19(2): 149-164.
[5] Guedou M. S. E., Kouato G. O., Houndonougbo M. F., Chrysostome C. A. A. M., Mensah G. A., 2018. Performances de ponte et qualité des œufs de poules pondeuses nourries avec des aliments à base de différentes variétés de grains de maïs. Int. J. Biol. Chem. Sci. 12(6): 2846-2855. ISSN: 1997-342X (Online), ISSN: 1991-8631 (Print). http://ajol.info/index.php/ijbcs; http://indexmedicus.afro.who.int; https://dx.doi.org/10.4314/ijbcs.v12i6.29
[6] DSA/ MAEP. 2022. https://dsa.agriculture.gouv.bj. Consulted on 12/07/23
[7] Badu-Apraku, B. and Fakorede, M. A. B. 2017. Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa. Ibadan, Nigeria. 632 pp.
[8] FAO, Union européenne et Cirad. 2023. Profil des systèmes alimentaires – Bénin. Activer la transformation durable et inclusive de nos des systèmes alimentaires. Rome, Bruxelles et Montpellier, France. https://doi.org/10.4060/cc3787fr/
[9] Yessoufou A. R., Adegnika M. 2018. Analyse de la compétivité de la filière maïs au nord du Bénin: Cas de la Commune de Parakou. Journal of Economic Literature (JEL) 7: 149-174. http://revues.imist.ma/?journal=REMSE&page=index
[10] Zohoungbogbo H. P. F., Montin A., Lègba E. C., Houdégbé C. A., Fassinou Hotègni N. V., Achigan-Dako E. G., 2018. Fiche technique synthétique pour la production du maïs jaune (Zea mays L.). Laboratory of Genetics Horticulture and Seed Science (GBioS), Dépôt légal N° 10668 du 06/09/2018, 3ème Trimestre Septembre, Bibliothèque Nationale (BN) du Bénin, ISBN: 978-99919-78-48-2; Website: www.gbios-uac.org
[11] DSA/ MAEP. 2022. https://dsa.agriculture.gouv.bj. Consulted on 02/06/23
[12] Badu-Apraku, B., Abamu, F. J., Menkir, A., Fakorede, M. A. B., Obeng-Antwi, K. and The, C. (2003). Genotype by environment interactions in the regional early variety trials in West and Central Africa. Maydica 48: 93-104.
[13] Carsky, R. J. and Iwuafor, E. N. O (1995). Contribution of soil fertility research and maintenance to improved production and productivity in sub-Saharan Africa. In: Proceedings of Regional Maize Workshop, 29 May–2 June, 1995, IITA, Cotonuo, Benin Republic.
[14] Onasanya, R. O., Aiyelari, O. P., Onasanya, A., Oikeh, S., Nwilene, F. E., & Oyelakin, O. O. (2009). Growth and yield response of maize (Zea mays L.) to different rates of nitrogen and phosphorus fertilizers in southern Nigeria. World Journal of Agricultural Sciences, 5(4), 400-407.
[15] Andrade, F. H.; Echarte, L.; Rizzalli, R.; Della, M. A.; Casanovas, M. Kernel number prediction in maize under nitrogen or water stress. Crop Sci. 2002, 42, 1173–1179.
[16] Ciampitti, I. A.; Vyn, T. J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stage. Field Crops Res. 2011, 121, 2–18. https://doi.org/10.1016/j.fcr.2010.10.009
[17] Zhang, G. Q.; Shen, D. P.; Xie, R. Z.; Ming, B.; Hou, P.; Xue, J.; Li, R. F.; Chen, J. L.; Wang, K. R.; Li, S. K. Optimizing planting density to improve nitrogen use of super high-yield maize. Agron. J. 2020, 112, 4147–4158. https://doi.org/10.1002/agj2.20334
[18] Adhikari, K., Bhandari, S., Aryal, K., Mahato, M., & Shrestha, J. (2021). Effect of different levels of nitrogen on growth and yield of hybrid maize (Zea mays L.) varieties. Journal of Agriculture and Natural Resources, 4(2), 48-62. https://doi.org/10.3126/janr.v4i2.3365
[19] Adhikari, K. et al. 2016. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat. Commun. 7: 10815. https://doi.org/10.1038/ncomms10815
[20] Logrono M., J. E. Lothrop, (1997) Impact of drought and low nitrogen on maize production in Asia. pp. 39-43. In: G. O. Edmeades et al. (Eds.), Developing Drought- and Low N-Tolerant Maize. CIMMYT/UNDP. Mexico, D. F.
[21] Wolfe D. W., D. W. Henderson, T. C. Hsiao, A. Alvio, (1988) Interactive water and nitrogen effects on maize. II. Photosynthetic decline and longevity of individual leaves. Agron. J. 80: 865- 870.
[22] Banziger, M. and Cooper, M. (2001) Breeding for low input conditions and consequences for participatory plant breeding: Examples from tropical maize and wheat, Euphytica, 122, pp. 503-519. https://doi.org/10.1023/A:1017510928038
[23] Akponikpe P. B. I., Tovihoudji P., Lokonon B., Kpadonou E., Amegnaglo J., Segnon A. C., Yegbemey R., Hounsou M., Wabi M., Totin E., Fandohan-Bonou A., Dossa E., Ahoyo N., Laourou D., Aho N., 2019. Etude de Vulnérabilité aux changements climatiques du Secteur Agriculture au Bénin. Report produced under the project “Projet d’Appui Scientifique aux processus de Plans Nationaux d’Adaptation dans les pays francophones les moins avancés d’Afrique subsaharienne”, Climate Analytics gGmbH, Berlin.
[24] Ministère du Cadre de Vie et du Développement Durable (MCVDD). 2018. Etudes de vulnérabilité: résultats préliminaires, Agriculture. GIZ/Climate Analytics, Cotonou. 31 pp.
[25] Tokoudagba, S. F. 2014. Economie de la production du maïs au Nord-Bénin: une analyse du compte de résultat des exploitations agricoles. Bulletin de la Recherche Agronomique du Bénin (BRAB) 3: 20-28. http://www.slire.net/download/2238/article_3_pg_brab_n_sp_cial_esr_d_cembre_2014_tokoudagba_economie-production-ma_s.pdf
[26] Yallou, C. G., Aïhou, K., Adjanohoun, A., Toukourou, M., Sanni, O. A. and Ali, D. 2010. Itinéraires techniques de production de maïs au Bénin. Bibliothèque Nationale du Bénin, Cotonou. 18 pp.
[27] MAEP (Ministère de l’Agriculture, de l’Elevage et de la Pêche), 2016. Catalogue Béninois des Espèces et Variétés végétales (CaBEV), 2016. INRAB/DPVPPAAO/ProCAD/MAEP & CORAF/WAAPP. 339 p. Dépôt légal N° 8982 du 21 octobre 2016, Bibliothèque Nationale (BN) du Bénin, 4ème trimestre. ISBN:
[28] Fischer, R. A. and Maurer, R. 1978. Drought resistance in spring wheat cultivars: Grain yield responses. Journal of Agricultural Resources 29: 897-912. http://dx.doi.org/10.1071/AR9780897
[29] Bouslama, M. and Schapaugh, W. T. 1984. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Science 24: 933-937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x
[30] Francisco, M., Pangirayi, T. and John, D. 2010. S1 selection of local maize landraces for low soil nitrogen tolerance in Zambia. African Journal of Plant Science 4: 67-81. www.internationalscholarsjournals.org
[31] Kristin, A. S., Senra, R. R., Perez, F. I., Enriquez, B. C., Gallegos, J. A. A., Vallego, P. R., Wassimi, N. and Kelley, J. D. 1997. Improving common bean performance under drought stress. Crop Science 37: 43-50. https://doi.org/10.2135/cropsci1997.0011183X003700010007x
[32] Rosielle, A. A. and Hamblin, J. 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science 21: 943-946. http://dx.doi.org/10.2135/cropsci1981.0011183X00210
[33] Igué, A. M., Gaiser, T. and Stahr, K. 2014. Landscape related variability of physical and chemical soil characteristics in the Moist Savannah of Benin. International Journal of AgriScience 4(1): 28-48.
[34] Banzinger, M., Edmeades, G. O., Beck, D. and Bellon, M. 2000. From Theory to Practice Breeding for Drought and Nitrogen Stress Tolerance in Maize Breeding for Drought and Nitrogen Stress Tolerance in Maize: from Theory to Practice. CIMMYT, Mexico. 70 pp. http://hdl.handle.net/10883/765
[35] Santos, T. d. O.; Amaral Junior, A. T. d.; Moulin, M. M., 2023. Maize Breeding for Low Nitrogen Inputs in Agriculture. Mechanisms Underlying the Tolerance to the Abiotic Stress 3: 136–152. https:// doi.org/10.3390/stresses3010011
[36] Rehman, S. U., Nietert, P. J., Cope, D. W. and Kilpatrick, A. O. 2005. What to wear today? Effect of doctor’s attire on the trust and confidence of patients, The American Journal of Medicine, 118(11): 1279–1286. https://doi.org/1016/j.amjmed.2005.04.026
[37] Hammad HM, Chawla MS, Jawad R, Alhuqail A, Bakhat HF, Farhad W, Khan F, Mubeen M, Shah AN, Liu K, Harrison MT, Saud S and Fahad S, 2022. Evaluating the Impact of Nitrogen Application on Growth and Productivity of Maize under Control Conditions. Front. Plant Sci. 13: 885479. https://doi.org/10.3389/fpls.2022.885479
[38] Dencic, S., Kastori, R., Kobiljski, B. and Duggan, B. 2000. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113: 43–52. https://doi.org/10.1023/A:1003997700865
[39] Akçura, M., Partigoç, F. and Kaya, Y. 2011. Evaluating of drought stress tolerance based on selections indices in Turkish bread wheat landraces. Journal of Animal and Plant Science 21: 700-709.
[40] Fernandez, G. C. J. 1992. Effective selection criteria for assessing stress tolerance. In Kuo, O. G. Ed. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress held in August 13–18, 1992 at Taiman, Taiwan. 12-27 pp. https://doi.org/10.22001/wvc.72511
[41] Jamshidi, A. and Javanmard, H. R., 2018. Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng. J. 9(4), 2093–2099. https://doi.org/10.1016/j.asej.2017.02.006
[42] Jafari, A., Paknejad, F. and Alahmadi, M. J. 2009. Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. International Journal of Plant Production 3: 33-38.
[43] Lyra, D. H., de Freitas M. L., Galli, G., Alves, F. C., Granato, Í. S. C. and Fritsche-Neto, R. 2017. Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids. Molecular Breeding 37: 80-87. https://doi.org/10.1007/s11032-017-0681-1
[44] Zhixin, Z., Kunhui, H., Zhiqian, F., Yanan, L., Liguo, C., Xinghua, Z., Shutu, X., Jianchao, L. and Jiquan, X. 2019. Evaluation of yield-based low nitrogen tolerance indices for screening maize (Zea mays L.) inbred lines. Agronomy 9: 240-247. https://doi.org/10.3390/agronomy9050240
[45] Tyagi, B. S. et al., 2020. Identification of wheat cultivars for low nitrogen tolerance using multivariable screening approaches. Agronomy 10(3), 417. https://doi.org/10.3390/agronomy10030417
[46] Bänziger, M. and Lafitte, H. R. 1997. Efficiency of secondary traits for improving maize for low nitrogen target environments. Crop Science 37: 110-117. https://doi.org/10.2135/cropsci1997.0011183X003700040013x
Cite This Article
  • APA Style

    Bourandi, K. B., Abdoul-Madjidou, Y., Olasanmi, B., Narcisse, H. S., Silvestro, M., et al. (2024). Assessing the Potential of Extra-Early Maturing Multiple Stress-tolerant Maize Hybrids Under Different Rates of Nitrogen. Journal of Plant Sciences, 12(1), 43-54. https://doi.org/10.11648/j.jps.20241201.17

    Copy | Download

    ACS Style

    Bourandi, K. B.; Abdoul-Madjidou, Y.; Olasanmi, B.; Narcisse, H. S.; Silvestro, M., et al. Assessing the Potential of Extra-Early Maturing Multiple Stress-tolerant Maize Hybrids Under Different Rates of Nitrogen. J. Plant Sci. 2024, 12(1), 43-54. doi: 10.11648/j.jps.20241201.17

    Copy | Download

    AMA Style

    Bourandi KB, Abdoul-Madjidou Y, Olasanmi B, Narcisse HS, Silvestro M, et al. Assessing the Potential of Extra-Early Maturing Multiple Stress-tolerant Maize Hybrids Under Different Rates of Nitrogen. J Plant Sci. 2024;12(1):43-54. doi: 10.11648/j.jps.20241201.17

    Copy | Download

  • @article{10.11648/j.jps.20241201.17,
      author = {Korokoro Bio Bourandi and Yacoubou Abdoul-Madjidou and Bunmi Olasanmi and Hounfodji Sedjro Narcisse and Meseka Silvestro and Aboudou Abib and Menkir Abebe and Badu-Apraku Baffour and Zoumarou Wallis Nouhoun},
      title = {Assessing the Potential of Extra-Early Maturing Multiple Stress-tolerant Maize Hybrids Under Different Rates of Nitrogen},
      journal = {Journal of Plant Sciences},
      volume = {12},
      number = {1},
      pages = {43-54},
      doi = {10.11648/j.jps.20241201.17},
      url = {https://doi.org/10.11648/j.jps.20241201.17},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jps.20241201.17},
      abstract = {Decline in soil fertility is a major constraint to maize production. This study aimed to assess the agronomic performance of improved maize varieties under different nitrogen rates to identify low nitrogen tolerant varieties. Five multiple stress-tolerant maize hybrids, developed by maize improvement program of the International Institute of Tropical Agriculture (IITA), and an open-pollinated variety used as check were evaluated under three levels nitrogen at two locations during 2019 growing season. The experiment was laid out in a split-plot experiment with three replications at each location. Nitrogen rates and varieties were the main and secondary factors, respectively. Data collected on grain yield and its related traits and were subjected to analysis of variance at 5% level of significance. The average grain yield of the six varieties under different nitrogen levels ranged from 2.2 t/ha at 0 kgN/ha in Angaradébou to 5.3 t/ha at 76 kgN/ha in Komkoma. Hybrid TZEEQI 342 × TZEEQI 7 showed high grain yield (4.0 t/ha) across the two agro-ecologies while varieties TZEE-W Pop STR QPM Co × TZEEQI 7 (3.7 t/ha) and TZdEEI 91 × TZEEI 21 (3.6 t/ha) had comparable grain yield. These hybrids were also less susceptible to nitrogen stress. They are the promising genotypes for Angaradébou localities while farmers around Komkoma should continue to cultivate TZEE-W Pop DT STR QPM.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Assessing the Potential of Extra-Early Maturing Multiple Stress-tolerant Maize Hybrids Under Different Rates of Nitrogen
    AU  - Korokoro Bio Bourandi
    AU  - Yacoubou Abdoul-Madjidou
    AU  - Bunmi Olasanmi
    AU  - Hounfodji Sedjro Narcisse
    AU  - Meseka Silvestro
    AU  - Aboudou Abib
    AU  - Menkir Abebe
    AU  - Badu-Apraku Baffour
    AU  - Zoumarou Wallis Nouhoun
    Y1  - 2024/02/28
    PY  - 2024
    N1  - https://doi.org/10.11648/j.jps.20241201.17
    DO  - 10.11648/j.jps.20241201.17
    T2  - Journal of Plant Sciences
    JF  - Journal of Plant Sciences
    JO  - Journal of Plant Sciences
    SP  - 43
    EP  - 54
    PB  - Science Publishing Group
    SN  - 2331-0731
    UR  - https://doi.org/10.11648/j.jps.20241201.17
    AB  - Decline in soil fertility is a major constraint to maize production. This study aimed to assess the agronomic performance of improved maize varieties under different nitrogen rates to identify low nitrogen tolerant varieties. Five multiple stress-tolerant maize hybrids, developed by maize improvement program of the International Institute of Tropical Agriculture (IITA), and an open-pollinated variety used as check were evaluated under three levels nitrogen at two locations during 2019 growing season. The experiment was laid out in a split-plot experiment with three replications at each location. Nitrogen rates and varieties were the main and secondary factors, respectively. Data collected on grain yield and its related traits and were subjected to analysis of variance at 5% level of significance. The average grain yield of the six varieties under different nitrogen levels ranged from 2.2 t/ha at 0 kgN/ha in Angaradébou to 5.3 t/ha at 76 kgN/ha in Komkoma. Hybrid TZEEQI 342 × TZEEQI 7 showed high grain yield (4.0 t/ha) across the two agro-ecologies while varieties TZEE-W Pop STR QPM Co × TZEEQI 7 (3.7 t/ha) and TZdEEI 91 × TZEEI 21 (3.6 t/ha) had comparable grain yield. These hybrids were also less susceptible to nitrogen stress. They are the promising genotypes for Angaradébou localities while farmers around Komkoma should continue to cultivate TZEE-W Pop DT STR QPM.
    
    VL  - 12
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Faculty of Agronomy, Laboratory of Phytotechny, Plant Breeding and Plant Protection, University of Parakou, Parakou, Benin Republic; Department of Agronomy, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria

  • Faculty of Agronomy, Laboratory of Phytotechny, Plant Breeding and Plant Protection, University of Parakou, Parakou, Benin Republic; National Institute of Agricultural Research of Benin Republic, Cotonou, Benin Republic

  • Department of Agronomy, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria

  • Faculty of Agronomy, Laboratory of Phytotechny, Plant Breeding and Plant Protection, University of Parakou, Parakou, Benin Republic

  • International Institute of Tropical Agriculture, Ibadan, Nigeria

  • Faculty of Agronomy, Laboratory of Phytotechny, Plant Breeding and Plant Protection, University of Parakou, Parakou, Benin Republic; Department of Agronomy, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria

  • International Institute of Tropical Agriculture, Ibadan, Nigeria

  • International Institute of Tropical Agriculture, Ibadan, Nigeria

  • Faculty of Agronomy, Laboratory of Phytotechny, Plant Breeding and Plant Protection, University of Parakou, Parakou, Benin Republic

  • Sections