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Introduction 

Einstein’s general theory of relativity is the most accepted theory of 

gravitation. Gravitation is explained by non-Euclidean geometry and not as field 

theory as e.g. the theory of Electrodynamics. The great acceptance of general 

relativity is based on the good predictions of many gravitational effects. The 

first results given already by Einstein himself are redshift, deflection of light 

and the perihelion in a static spherically symmetric gravitational field. Later on 

till now, an extensive study with different applications of general relativity had 

taken place. Non-stationary solutions of the theory are given, too. In particular, 

there are the well-known black holes and the expanding universe. In both cases 

singularities exist; black holes have a singularity in the centre of the body and 

the universe starts with a singularity in the beginning which is called “big bang”. 

All the standard theories such as e.g. Electrodynamics are field theories whereas 

Einstein’s theory is a geometrical theory. A book about classical field theories is 

e.g. given by Soper         . 

Therefore, I start the study of a theory of gravitation. The metric is flat space-

time, e.g., the pseudo-Euclidean geometry and the gravitational potentials ijg  

must satisfy covariant (relative to the metric) differential equations of order two. 

On the left hand side we have the non-linear differential operator in divergence 

form of the potentials whereas the total energy-momentum tensor inclusive that 

of gravitation is the right hand side of the differential equations. It is worth to 

mention that the energy-momentum of gravitation is a covariant tensor. In 

addition to the flat space-time metric the proper time   is defined in analogy to 

the metric by a quadratic form with the potentials ijg  as coefficients. Such 

theories are already well known and are studied by many authors. They are 

called bi-metric theories. The first one who has studied such a theory of 

gravitation was Rosen [Ros 40]. Later on there were given very different bi-

metric gravitational theories. Gupta [Gup 54] has the theory of Einstein written 

in form of a field theory by a successive approximation procedure. Kohler [Koh 

52, 53] started from a flat space-time metric with several suitable Lagrangians 

for the gravitational field similar to our consideration. One of these Lagrangians 

is identical with our Lagrangian. But Papapetrou et al. [Pap 54] have given an 

argument against the theory of Kohler showing by linearization of the 
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differential equations that two mass parameters appear in the potentials of the 

spherically symmetric gravitational field. Kohler [Koh 52, 53] constructed all 

the Lagrangians which yield a symmetrical energy-momentum tensor. Compare 

also the later article of Rosen          and the extensive study of Logunov and 

co-workers (see e. g.,           about bi-metric theories of gravitation. 

In this work the theory of gravitation in flat space-time is summarized. It was 

studied by the author during several years. We do not give other bi-metric 

theories of gravitation. Many applications of the theory of gravitation in flat 

space-time are studied and will be given here or at least cited where they can be 

found. Most of the received results of the theory of gravitation in flat space-time 

are compared with those of general relativity. We only give a small part of the 

experimental results. This work is divided into twelve chapters.  

The first chapter contains the theory of gravitation in flat space-time. The 

energy-momentum tensor of the gravitational field is given. The field equations 

are in covariant form where the left hand side is a differential operator in 

divergence form of the gravitational field and the right hand side is the whole 

energy-momentum of matter and gravitation. The conservation of the whole 

energy-momentum is given. This law together with the field equations implies 

the equations of motion of matter. The field equations are also rewritten by the 

use of the field strength of gravitation instead of the gravitational potentials. 

The angular momentum of a particle and the equations of motion of the spin 

angular-momentum in the gravitational field are stated. Furthermore, the 

transformations of the equations of motion and of the spin into a uniformly 

moving frame are given which is used to study a gyroscope in the gravitational 

field of a rotating body, e.g. the Earth. This result agrees to the lowest order 

with the corresponding one of Einstein’s theory although the used methods are 

quite different since gravitation in flat space-time is not a geometrical theory. 

In chapter II static, spherically symmetric bodies are studied. The field 

equations, the equations of motion in this field and the energy-momentum are 

given. Inertial and gravitational mass are equal. The gravitational field in the 

exterior of the body is stated. This result agrees with that of Einstein’s theory to 

some accuracy but higher order approximations deviate from one another. The 

case of non-singular solutions is stated and the equations of motion of a test 

particle in this field are given. The redshift, the deflection of light and the 

perihelion shift in a spherically symmetric field are received. They agree to 

some order with those of general relativity. Furthermore, the radar time delay is 

given which also agrees to the lowest order with Einstein’s theory. Neutron 

stars are numerically studied. 
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In chapter III non-stationary, spherically symmetric solutions are stated. The 

field equations, the equations of motion and the energy-momentum 

conservation are given without detailed derivations. The differential equations 

describing the spherically symmetric body are very complicated and cannot be 

solved analytically; they must be solved numerically. This would be of great 

interest in the study of black holes. 

In chapter IV rotating stars are considered. All the received results are based 

on numerical computations which are received by some co-workers. 

In chapter V post-Newtonian approximations are calculated. The conserva-

tion law of the total energy-momentum and the equations of motion are studied. 

The received results again agree to the lowest order with those of general 

relativity. 

Chapter VI contains the post-Newtonian approximations of spherically 

symmetry. The 1-post-Newtonian approximation agrees with the one of 

Einstein’s theory but the 2-post-Newtonian approximations do not agree. Flat 

space-time theory of gravitation doesn’t imply the theorem of Birkhoff. The 

exterior gravitational field of a non-stationary star contains small time-

dependent expressions. Furthermore, the motion of a test body in the 

gravitational field of a non-stationary star is given. The gravitational radiation 

from binary stars is also studied and it is in agreement with the one of Einstein’s 

theory.    

In chapter VII homogeneous, isotropic, cosmological models are studied with 

and without cosmological constant. The essential result is the existence of non-

singular cosmological models, i.e. there exist no “big bang” in contrast to 

Einstein’s theory. Detailed studies of these models are given where analytic 

solutions can be received under the assumption that there is no cosmic 

microwave background radiation. In the beginning of the universe no matter 

exists and all the energy is in form of gravitation. In the course of time matter 

arises at coasts of gravitational energy. The whole energy is conserved. The 

universe starts with contraction to a positive value and then it expands for all 

times. But the two models  >0 and 0  differ from one another. In the first 

case matter will be slowly destroyed in the course of time whereas in the second 

case matter in the universe increases for all times to a finite value. In this case 

the universe is at present time nearly stationary. 

In chapter VIII the two possibilities of an expanding and a non-expanding 

universe are studied. The first interpretation is well known whereas the second 

interpretation is also possible. The interpretation of the redshift in a non-
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expanding universe follows by the different kinds of energy, e.g., of matter and 

of gravitation which are transformed into one another in the universe in the 

course of time. Therefore, the larger redshift of distant objects is explained by a 

stronger gravitational field in analogy to the redshift in a static spherically 

symmetric gravitational field. In addition to the standard proper time, the 

absolute time is introduced. The age of the universe measured with absolute 

time is in agreement with experimentally known results even for a vanishing 

cosmological constant 0 . 

In chapter IX post-Newtonian approximations in the universe are studied 

where linear, spherically symmetric perturbations are considered. In the 

beginning of the universe small matter density contrasts arise in the uniform 

distribution of matter. In the matter dominated universe the density contrast 

increases very fast in agreement with the observed CMBR anisotropy. General 

relativity gives only a small increase of the density contrast and has difficulties 

to explain the observed large scale structures. 

In chapter X post-Newtonian approximations in the universe are studied. The 

gravitational potentials are computed. The equations of motion are given. The 

gravitational force of long-field force is compared with Newton’s force. The 

radius of compensation of the two forces is computed, i.e., that of Newton’s 

force and that of the long-field force are compared with one another. This radius 

of compensation of the two forces decreases in a universe with cosmological 

constant  >0 and increases in a universe with cosmological constant 0 . 

In chapter XI preferred and non-preferred reference frames are studied. In the 

preferred frame the pseudo-Euclidean geometry holds and there exists an 

extensive study of preferred frames in the literature. In the non-preferred 

reference frame the velocity of light is anisotropic but for the Michelson-Morley 

experiment and for many other experiments the theory gives the correct results. 

Transformations from the different frames into one another are studied. 

Chapter XII contains some additional results which are not necessary 

connected with the theory of gravitation in flat space-time. There are essays to 

explain some experimental results which are received in the last years. The first 

one is the anomalous flyby where the rotation of the Earth is used to study this 

effect. It is shown that there is a frequency jump which is not equivalent to a 

jump of the velocity. In this chapter the equations of Maxwell in a medium are 

considered, too where in addition to the pseudo-Euclidean geometry the proper-

time is introduced in analogy to the theory of gravitation in flat space-time. The 

well-known equations of Maxwell in a medium are received. This result is 

subsequently generalized to the equations of Maxwell in a medium contained in 
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the universe. We give an approximate formula for the proper-time of a medium 

contained in the universe. The arriving frequency of light emitted by an atom 

from a distant object, as e.g. galaxy or quasar contained in a medium is 

computed. It is applied to cosmological models. A redshift formula is received 

under some assumptions. In the special case that the object is not contained in a 

medium the well-known Hubble law holds. But more generally it may be that 

the assumption of dark energy is not necessary by the introduction of a medium 

in which photons are emitted. Galaxies or quasars with nearly the same 

distances can have quite different redshifts in dependence of different media in 

which they are contained. Furthermore, the approximate proper-time of a 

spherically symmetric body is stated where the universe is neglected. The 

velocity of a test body circulating this body is received. A simple small 

reflection index which depends on the distance from the centre of the body is 

studied. It is assumed that the medium has a fixed radius 0r  
where the 

refraction index is equal to one for distances greater than this distance, i.e. there 

is no medium. 

This result is applied to the Pioneers although an anisotropic emission of on-

board heat may explain the observed anomalous acceleration. We get also an 

anomalous acceleration of the Pioneers towards the Sun with a decrease of the 

acceleration with increasing distance from the Sun. The application of the 

received velocity of a test body circulating a galaxy can also explain the 

observed flat rotation curves under some assumptions. The surrounding medium 

of the galaxy given by the refraction index may be interpreted as dark matter 

with radius 0r . In this case, it follows that the mass of this dark matter 

surrounding the Sun is very small compared to that of the Sun whereas the mass 

of dark matter surrounding a galaxy is much greater than the mass of the 

luminous galaxy.  

Summarizing it follows that for small gravitational effects the results of flat 

space-time theory of gravitation and of Einstein’s general relativity theory agree 

to the measured accuracy with one another. But for the case of strong 

gravitational effects the two theories give quite different results. Here, we will 

mention the non-singular solutions of cosmological models in flat space-time 

theory of gravitation which means that the universe does not start with a “big 

bang” and the theorem of Bikhoff which does not hold in the gravitational 

theory of flat space-time.  

No results are received about collapsing stars. Are they ending in a “black 

hole” or something else? The describing differential equations of a collapsing 

star in chapter III are very complicated and may be only solved numerically. 
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The violation of Bikhoff’s theorem gives the hope that the star will not end in a 

“black hole”, that is with a singularity in the centre of the star. 
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In this chapter a theory of gravitation in flat space-time is studied which was 

considered in several articles by the author. 

Let us assume a flat space-time metric. Denote by  ix  the co-ordinates of 

space and time then the line-element can be written 

 
 

2 i j
ijds dx dx   (1.1) 

Here,  ij  is a symmetric metric tensor. In addition to the metric tensor a 

symmetric contra-variant tensor  ij  is defined by  

 kj j
ik i   ,  

ik i
kj j   . (1.2) 

Furthermore, we put 

  det ij  . (1.3) 

In the special case of a pseudo-Euclidean metric we have 

    1 2 3, , ,ix x x x ct . (1.4) 

 1 2 3, ,x x x  are the Cartesian co-ordinates, t  is the time and c  is the velocity 

of light. Then, the metric tensor has the form  

    1,1,1, 1ij diag   . (1.5) 

This is the metric in which the most kinds of fields and matter are described. 

1.1  Gravitational Potentials 

Similar to Maxwell’s theory of Electrodynamics we assume that gravitation 

is described by a field in space and time. The electro-magnetic field can be 

described with the aid of a four-vector called the potentials of the field and 

produced by an electric four-current. 
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Analogously, the symmetric gravitational potentials  ijg
 
are produced by the 

total energy-momentum of matter and gravitational field. Similar to the 

equations (1.2) let us define a symmetric tensor  ijg  by 

 kj j
ik ig g  ,    

ik i
kj jg g   (1.6) 

We put  

  det ijG g . (1.7) 

In addition to the time t  we define the proper-time   by  

  
22 i j

ijc d g dx dx   . (1.8) 

The relation (1.8) is similar to the definition of the line-element (1.1) with the 

metric tensor  ij . Therefore, theories of gravitation described by  ijg  with 

the proper-time (1.8) and with the line-element (1.1) are called bi-metric 

theories of gravitation. 

1.2  Lagrangian 

The theory of gravitation is derived from an invariant Lagrangian which is 

quadratic in the first order co-variant derivatives of the potentials       resp. of 

the contra-variant tensors      . The derivatives are relative to the flat space-

time metric (1.1) and they are denoted with a bar “/”. The Lagrangian has the 

form 

 

1/2

ln
/ / / /

1

2

ij km kl mn
G kl mn i j i j

G
L g g g g g g g



   
     

   
 (1.9) 

In addition let us introduce the invariant Lagrangian 

 

1/2

8
G

L




 
   

 
 (1.10) 
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Here,   is the cosmological constant. For simplicity we consider dust (no 

pressure) with the density   . The Lagrangian for matter can be written in the 

form 

 
i j

M ijL g u u   (1.11) 

where      is the four-velocity. It follows by the use of 

 
i

i dx
u

d
  (1.12) 

and relation (1.8) 

 
2i j

ijg u u c  . (1.13) 

By the introducing of the constant 

   
   

  
 (1.14) 

the whole Lagrangian has the form: 

 8G ML L L L   . (1.15) 

Here, the constant   denotes the gravitational constant. 

1.3  Field Equations 

The differential equations for the gravitational potentials  ijg  follow from 

the variation - equation  

  
1/2

4L d x  . (1.16) 

From Euler’s equations we get by the formulas for the covariant derivatives 

(see e.g., [Sop 76], p.189 ff ) 

 
 

 

 

 
1/2 1/2

1/2 1/2
/

/

1 1
ij ij

k
k

L L

g g

 

 

    
  

    

 (1.17) 
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implying by the use of (1.15) 

 
 

/ /

8
GG M

ij ij ij
k k

L LL L

g g g
    

  
   

. (1.18) 

We use the following formulas 

 
 

1/2

1/21

2
ijij

G
G g

g

 
   


,  

ij ik jl

kl

g
g g

g


 


. 

Equation (1.18) implies by the use of these relations and multiplication with 
ljg the following formula  

 

 

1/2

/ /

172

/ / / /

1

2

1 1

2 2

1
4

4

mn kj j kl
ik n i kl n

m

jr mk nl mn kl
mn kl i r i r

j m j
i G im

G
g g g g g

G
g g g g g g g

L L g u u






 

    
     
     

   
    

   

  

 (1.19) 

These are the field equations of gravitation for dust. 

1.4  Equations of Motion and the Energy-Momentum 

We will now prove the equivalence of the conservation law of energy-

momentum and the equations of motion. It follows from equation (1.18) by 

multiplication with /
kj

lg  and summation 

 
 

/ / /

/ //

/ /8

mn mnG G
l l kmn mn

k kk

G mn mn r s
l l mr nsmn

L L
g g

g g

L L
g g g g u u

g


  
 

  

 
 



. (1.20) 

The mixed energy-momentum tensors of the gravitational field, of vacuum 

energy (given by the cosmological constant   ) and of dust are given by 
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 
1/2

,
/ / / /

1 1 1

8 2 2

j jr m k nl mn kl j
mn kl i r i r i Gi

G
T G g g g g g g g L

 

    
       

     
          (1.21a) 

  
1

16

j j
ii

T L


   (1.21b) 

  
j m j

imi
T M g u u  (1.21c) 

and the corresponding symmetric tensors are defined by 

               
 

                
 

                
 

     (1.22) 

Put  

 

1/2

/

/

j mn kj
i ik n

m

G
D g g g



  
   

   

. (1.23a) 

Then, the field equations of gravitation (1.19) have the simple form 

 
1

4
2

j j m j
i i m iD D T    (1.23b) 

Here,  

   
 

      
 
      

 
      

 . (1.23c) 

is the whole energy-momentum tensor of gravitational field, of vacuum energy 

and of matter. 

The equations (1.23) can be rewritten  

 
1

4
2

j j j m
i i i mD T T 

 
  

 
. (1.24) 

It is worth to mention that the equations (1.23) are generally co-variant. In 

particular, the energy-momentum of gravitation is a tensor in contrast to the 

corresponding pseudo-tensor in Einstein’s general relativity.  

The field equations of gravitation (1.23b) and (1.24) are formally similar to 

the corresponding equations of general relativity. Here, j
iD  is a differential 
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operator of order two in divergence form for ijg  whereas in general relativity 

there is instead of that the Ricci tensor. The source of the gravitational field in 

flat space-time theory of gravitation is the whole energy-momentum tensor 

inclusive the one of the gravitational field which is not a tensor in Einstein’s 

theory and it does not appear as source for the field. 

Relation (1.20) can be rewritten  

 / /

/ /

8mn l m nG
k k G mn kmn

l l

L
g L L g u u

g
 

 
   

 
, 

i.e., we get by the use of (1.21a) and (1.21b)  

     /
/

1

2

m m m n
mn ii i

m
T G T g u u    . 

This relation becomes by the substitution of (1.21c) and the use of (1.23c) 

     / / // /

1 1

2 2

m m mnm m n
i m mn i mn ii m i m

T T M g u u T M g T M    . 

Hence, the conservation of the whole energy-momentum  

 
/ 0m

i mT   (1.25a) 

is equivalent with the equations of motion for matter 

        
  

 

 
            (1.26) 

The conservation law of the whole energy-momentum (1.25a) can be 

rewritten  

  
/

0in m
n

m
T  . (1.25b) 

The conservation of mass is given by  

  
/

0m

m
u  . (1.27)  

More general energy-momentum tensors for matter can be considered, e.g. 

the matter tensors of perfect fluid 
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     2ij i j ijT M p u u pc g    (1.28) 

where p
 
denotes the pressure of matter. The conservation law of the whole 

energy-momentum and the equivalent equations of motion are also given by the 

equations (1.25) and (1.26). 

The conservation law of the whole energy-momentum (1.25), the equations 

of motion (1.26), and the conservation law of mass (1.27) are given in co-

variant form. The equations of motion (1.26) and the conservation of mass (1.27) 

can be rewritten in non-covariant form  

 
 

      
1/2

1/2

1 1

2

k mnmn

k ii

g
T M T M

x x





 

 
 (1.29a) 

 
 

  1/2

1/2

1
0k

k
u

x
 




 


. (1.29b) 

The equations (1.29) give for a test particle, i.e. 0p   

  
1

2

k m nmn
ik i

gd
g u u u

d x





. (1.30) 

It follows by differentiation, the use of (1.11), and some elementary 

calculations 

  
2

2

i m n
i

mn

d x dx dx
G

d dd  
   (1.31) 

where       
  denote the Christoffel symbols of ijg .  

It is worth mentioning that the equations for the gravitational field can be 

generalized including electro-magnetic fields, scalar fields, etc., by addition of 

the corresponding Lagrangians for these fields to (1.15) which will not be 

considered.  
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1.5  Field Equations Rewritten 

It is sometimes useful for the applications of the gravitational theory to 

consider instead of ijg  symmetric tensors defined by 

 

1/2

ij ijG
f g



 
  

 
 (1.32a) 

and 

 

1/2

ij ij

G
f g




 

  
 

 (1.32b) 

yielding 

 
1 ,kj j
k if f 

ik i
kj jf f  . (1.33) 

Then, the equations for the gravitational field (1.23) can be rewritten 

  /
/

4mn kj j
ik n i

m
f f f T  (1.34) 

where the energy-momentum tensor of gravitation has the form 

   / / / /

1 1 1

8 2 2

j jr mk nl mn kl j
mn kl r i r i i Gi

T G f f f f f f f L


  
    

  
 (1.35) 

with 

 / / / /

1

2

rs mk nl mn kl
G mn kl r s r sL f f f f f f f

 
   

 
. (1.36) 

The energy-momentum tensor of perfect fluid is given by  

    
1/2

2j j k j
ik ii

F
T M p f u u pc 




 

   
 

 (1.37) 

where 

  det ijF f . (1.38) 
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The relation (1.13) has the form 

 

1/2

2m n
mn

F
f u u c




 

  
 

. (1.39) 

1.6  Field Strength and Field Equations 

The equations of motion (1.31) of a test particle in the gravitational field are 

not generally co-variant. 

A co-variant derivative of the four-vector  iu  of a test particle is  

 
i i

i m n
mn

Du du
u u

D d 
   . (1.40) 

i
mn  are the Christoffel symbols of the metric (1.1). 

The equations of motion (1.31) can be rewritten by the substitution (1.40) 

 
i

i m n
mn

Du
u u

D
   (1.41) 

where 

  
ii i

mn mnmn
G   . (1.42) 

Elementary calculations imply that 
i

jk  is a tensor of rank three. Hence, the 

equations of motion (1.41) for a test particle in the gravitational field  ijg  are 

generally co-variant. Similar to the equations of motion for a test particle in the 

electro-magnetic field where on the right hand side stands the Lorentz-force 

defined by the electro-magnetic field strength the tensor 
i

jk  in the equations 

(1.41) can be interpreted as gravitational field strength and the right hand side of 

(1.41) is the gravitational force. 

Elementary calculations give  
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   
r rmn

nr mri mi ni

g
G g G g

x


  


. 

Hence, it follows  

/
r r

mn i mi nr ni mrg g g   . 

Therefore, we get 

 / /
im im im n i

mk j mk j kn mj kjg g g g g g     . (1.43) 

With the aid of (1.43) all the co-variant derivatives of 
ijg  can be replaced by 

the gravitational field strength. Elementary calculations give the Lagrangian 

  
1/2

ln2 mn k l kl r s r s
G lm kn rs km rm sn

G
L g g g



 
         

 
 (1.44) 

The energy-momentum tensor of the gravitational field has the form 

 
 

1/2

ln

1 1
( )

4 16

j jn k l kl r s r s j
i ki rs kn li rn si i G

G
T G g g g L

  

 
         

   
 (1.45) 

It follows for the equations of the gravitational field (1.23b) 

  
1/2

/

4mn j jk l j k j
in il kn i kn i

m

G
g g g T 



  
         
   

. (1.46a) 

The field equations (1.24) have the form 

  
1/2

/

1
4

2

mn j jk l j j m
in il kn i i m

m

G
g g g T T 



    
          
     

. (1.46b) 

Summarizing, we have written the theory of gravitation in flat space-time by 

the use of the field strength of gravitation similar to Maxwell’s theory written 

with the aid of the electro-magnetic field strength. 
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1.7  Angular-Momentum 

We will now derive the conservation law of the whole angular-momentum. 

Let us start from the conservation law of the whole energy-momentum (1.25b) 

which can be rewritten  

 
 

  1/2

1/2

1
0im i mn

mnm
T T

x





  


 (1.47a) 

where we have introduced the non-symmetric energy-momentum tensor 

 ij im j
mT T . (1.47b) 

In an inertial frame, i.e. the metric tensor  ij  is constant and therefore 

0i
jk   the relation (1.47a) implies a conservation law of the whole energy-

momentum. Therefore, we get 

  
1/2

14 3iP T d x    (i=1-4) (1.48) 

Where    is a constant and the integration is taken over the whole space. 

Equation (1.47a) gives 

 
 

  1/2

1/2

1 j im ij j i mn
mnm

x T T x T
x





   


. (1.49) 

The field equations (1.23) imply 

1/2

/ /

/

1 1

4 2

ij im j mn ik jl ij kl
m kl n kl n

m

G
T T g g g g g  

 

    
       

     

. 

The substitution of this relation into equation (1.49) and the subtraction from 

the arising from the same equation where i  and j  are exchanged yields 

  
    

 

1/2 1/2

1/2

/

1 j im i jm

m

ijm j i i j mn
m mn mn

x T x T
x

A x x T

 



  



    

 (1.50) 
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with the contra-variant tensor 

  
1/2

/ /

1

4

ijk km is jr js ir
rs m m

G
A g g g g 

 

 
  

 
. (1.51) 

It follows from equation (1.50) by the use of relations for the co-variant 

derivatives of tensors of order three  

  
   

 

1/2

1/2

1
( )i jm j im ijm

m

j i i j mn i njm j inm
mn mn mn mn

x T x T A
x

x x T A A





  



     

. (1.52) 

These equations imply in uniformly moving frames the conservation law of 

the angular-momentum, i.e.  

  
1/2

4 4 4 3ij i j j i ijM x T x T A d x        , 1,2,3,4i j   (1.53) 

is constant for all times. The first two expressions correspond to the usual 

definition of the angular momentum. To study the last expression we use the 

first part of the relation (1.43) and rewrite (1.51) 

  
1/2

/

1

4

ijk kr sm in j jn i
mn r s s

G
A g g g    

 

 
  

 
. (1.54) 

We now define the canonical momentum  

 
/4

1

16

G
ij ij

L

g


 


 (1.55a) 

implying 

 

1/2

4
/

1 1

8 2

k mn
ij k im jn ij mn

G
g g g g g g

 

   
      

   
. (1.55b) 

The Hamiltonian is given by 

 /4

1

16

mn
mn GH g L


  . (1.56a) 
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Elementary computations give 

  
4

4
H T G  , (1.56b) 

i.e. H  is the energy density of the gravitational field. It follows from (1.54) by 

the use of relation (1.55b) 

  4 2ij j i i j mk nl
m n m n klA g       . (1.57) 

We define for , 1,2,3,4i j   the anti-symmetric four-matrices 

    ij ij j i i j
mn m n m n         (1.58) 

with the proper-values ,0 i . The relation (1.57) can be rewritten 

 4 2ij ij mk nl
mn lkA g   . (1.59) 

Hence, the last expression in equation (1.53) of the angular momentum can 

be interpreted as consequence of the spin of the gravitational field. 

1.8  Equations of the Spin Angular Momentum 

In this sub-chapter we follow along the lines of Papapetrou [Pap 51] who 

uses a method of Fock [Foc 39]. The following detailed calculations can be 

found in [Pet 91]. 

The equations of motion for matter (1.29a) can be written in the form: 

 
 

        
1/2

1/2

1 im i mn

m mn
T M G T M

x





  


 (1.60) 

where it is assumed that        vanishes outside of a narrow tube which 

surrounds the world line of the test particle. The test particle describes a world 

line     iX t X t
 
with  4X t ct . Let us put in analogy to [Pap 51] 

    
1/2

4 3 
ijijM u T M d x  (1.61a) 
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      
1/24 3ijkij k kM u x X t T M d x     (1.61b) 

  4 4

4

1ij ij jiM M
u

    . (1.61c)  

We obtain the equations of motion 

     
4

4

i
i imn kmn

kmn mn

d M
G M G M

d u x

  
    

 
 (1.62a) 

and of the spin angular momentum 

 
   

   

4 4

4 4

4

4

4

4

i j
ij j i

i
i jmn

mn mn

j
j imn

mn mn

d u d u d

d d du u

u
G G M

u

u
G G M

u

  
  

 

 
    
 

 
    
 

 (1.62b) 

Furthermore, we have  

    4 4

4
2

i
ijk ij k ik j j k k ju

M u u u u
u

         (1.63a) 

 4 4 4 4ij ji i j j iM M u u      (1.63b) 

 44 4 4i iM u    (1.63c) 

 

 

 

44
444

4 4 4

4

4
.

i j j
ij jmn

mn

ij
j imn

mn

u u d M
M M G M

du u u

d M
G M

d u





  
     

  

 
  

 

 (1.63d)

 

Some of the relations (1.62) are identities. Therefore, we have eight equations 

(four equations (1.62a), three equations (1.62b) and one equation (1.13) for the 
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eleven unknowns quantities 44M , iu  1,2,3,4i  , and 
ij  , 1,2,3i j  . It is 

proved in [Pap 51] that ij  
is the components of a tensor and the expression 

   4 4

3 4

1 1 mm k l
mkl

m M G u u
c u

    (1.64) 

is a scalar where m
i imu g u . We will now give a co-variant formulation of the 

equations (1.62). 

In analogy to (1.40) we define the co-variant derivative 

 /
ij ij m ij i nj m j in m

m mn mn

D d
u u u

D d
    

 
    . (1.65) 

Let us introduce the anti-symmetric tensor 

 .ij ij i mj n j im n
mn mn

D
A u u

D
  


      (1.66) 

Then, we have by (1.62b), (1.63a), (1.42) and (1.65)  

 4 4

4 4
0

i j
ij j iu u

A A A
u u

   . (1.67) 

When we multiply (1.67) with ju  we get  

 
4 4

4 2 4

1 m i
i m imu u

A A A
u c u

 
   

 
. (1.68) 

By the use of the last two relations we get the co-variant form of (1.62b) 

  2

1
0ij j im i jm

mA u u A u A
c

   . (1.69) 

We will now give (1.62a) in co-variant form and write (1.63d) for 4j  with 

the aid of (1.63a), (1.63c), 04 ijM , (1.65) and (1.66) 

     44 4 4 44 4

4
.

i
ii m n i m n

mn mn

u
M G u A M G u

u
       (1.70) 
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We get by multiplying this relation with 
4

iu

u
and the use of (1.64) 

 
 

  444 4 4

2 2 4
4

1 1m n mm

mn

u
M G u mc A

c uu
   

. (1.71) 

Hence, we get from (1.70) by the use of (1.71) and (1.68) 

 4 4

4 4 2

1 1 1ii i k l ik
kkl

M mcu G u u A
u u c

    . 

Now, it follows from (1.62a) by the use of (1.68), (1.61) and elementary 

calculations 

 

 

     

2 2

1 1

0

ii ik k l lr
k rkl

i i n mk l

m lk nm kl

d
mcu u A G u mcu u A

d c c

G G G u
x





   
      

   

 
     

 



 (1.72) 

The introduction of the co-variant derivative of a four-vector gives  

 
2 2

1 1

1
0

2

i im i m n nk
m mn k

i nm k
mnk

D
mcu u A u mcu u A

D c c

R u





   
      

   

 

 (1.73) 

where i
mnkR  is the curvature tensor of 

ijg . Although the equations (1.62a) and 

(1.62b) are identical with those of general relativity the co-variant forms (1.73), 

(1.69) together with (1.66) are different from those of general relativity [Pap 51]. 
ij

 
which is defined by (1.61c) is not the spin in flat space-time theory of 

gravitation. The spin of a particle must be defined by  

 
     

     

41/2 3

41/2 3

jij i i

ij j

S x X t T M d x

x X t T M d x





  

  




. (1.74) 
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In Einstein’s theory the motion of a spin in free fall can be described 

according to the equations of parallel transport (see e.g. [Wei 72]. This is not 

possible by the use of flat space-time theory of gravitation. 

1.9  Transformation to Co-Moving Frame 

In the previous sub-chapter we have seen that there are not enough equations 

for the spin components. Schiff [Sch 80] remarked that one has to transform the 

equations of spin components to the co-moving frame, i.e. to the frame of the 

gyroscope. We use the considerations of Petry [Pet 86] to transform from a 

preferred frame '  with    ' 1,1,1, 1ij diag    to a non-preferred frame   

moving with velocity  1 2 3' ', ', 'v v v v  relative to the frame ' . Let 

      1 2 3' ' , ' ' , ' 'X t X t X t  be the distance vector of   from ' . Then, 

  ' ' '
'

i id
X t v

dt
  . (1.75) 

The transformations of quantities in '  to the corresponding ones in the co-

moving frame   are given in [Pet 86] 

    1

2

'
,

'
' 1 ' '

'

i
i i i

v
x

vc
x x X t

cv

c

 

 
 
 

    ,     = dt  (1.76a) 

with 

 

1/2
2

'
1

v

c



 

  
 
 

. (1.76b) 

It is sufficient to consider (1.76) up to quadratic expressions in the absolute 

value of the velocity 'v , i.e. 

 
1 '

' , ',
2

i
i i iv v

x x x X
c c

 
   

 

2
1 '

' 1
2

v
dt dt

c

 
  
 
 

. (1.77) 
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In the frame '  we consider equation (1.62b), multiplied with '/ dtd , the 

use of (1.63a) and 4'/ ' '/i iu u v c , i.e. 

 

   

   

   

44 4 '

4

4

' ' '
' ' ' ' ' '

' ' '

'
' ' ' '

' '
' ' ' ' 0

i j i
iij j i jm n

mn mn

j
j im n

mn mn

j i
i j m n

mn mn

d v d v d v
G G v

dt c dt c dt c

v
G G v

c

v v
G G v

c c

   





 
      

 

 
    
 

 
     
 

 (1.78) 

Furthermore, it follows 

' '
'

i j
ij mn

m n

x x

x x
 

 


 
. 

We get after some calculations for the spin tensor 
ij  in  

 
3 3

4 4

1 1

' ' 1 ' ' ' '
'

2

i j i k j k
ij ij j i kj ik

k k

v v v v v v

c c c c c c
     

 

 
     

 
   (1.79a) 

 

2 3
4 4 4

1

1 ' 1 ' '
' 1

2 2

i k
i i k

k

v v v

c c c
  



 
   
 
 

 . (1.79b) 

If we substitute (1.79) into (1.78) and neglect expressions of the form

v v

c c

 

  it follows by elementary calculations  

    
3

4 4 4

44
1

' '
'

ij i j j i ik jk jk ik

k

d
G v v

dt
    



 
       

 
  (1.80a) 

where 

          
3

4

4 4 44 44
1

1 1
' ' ' '

2 2

i i i jij k i j i

jk j j
k

G v G c G v G v G v


 
          

 
  (1.80b) 

We will now apply the result to the spin angular momentum of a test particle 

in the gravitational field of a spherically symmetric body in the preferred frame 
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'  with mass M  and angular velocity  . It holds in '  up to linear 

approximations 

 

 

 

   

2

2

3 3

' 1 2 , , 1,2,3

1 2 , 4

2 1
' , 4, 1,2,3; 1,2,3, 4

ij ij

kM
g i j

c r

kM
i j

c r

kJ
x i j i j

c r





 
   

 

 
     

 

      

 (1.81)  

where J  is the momentum of inertia. We get by elementary computations  

 
1/2

3
2

11 22 33

2 3
1

1
, ', ' , , .k ij ji

k

kM
r x x v i j

c r

 
         
 
  

Put 

 23 31 12, ,     

then, we have 

  
 

2 3 2 3 2

',3 1 1
' ' 3 '

2

xkM kJ
x v x

c r c r r



 

      
 

. (1.82) 

We define  23 31 12, ,    . Relation (1.81a) is rewritten in the form 

    2 3
2 ', '

'

d kM
x v

dt c r
     . (1.83a) 

By the use of the law of Newton 

3

' '

'

dv x
kM

dt r
   

we get 

 
1 ' '

2 ,
' '

d dv v

dt c dt c
  

 
    

 
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 

2 3 2

',3 1 ' '
3 '

2 '

xdv v kJ
x

c dt c c r r



  

      
   

. (1.83b) 

We consider instead of   the spin. We get in   by the use of the standard 

transformation formula, considering only expressions which are quadratic in the 

velocity and linear in the expression 
2

kM

c r
, the use of (1.81)  

 

 

 

 

 

2

2

' '
1 2 , , 1,2,3

'
, 1,2,3; 4

'
, 4; 1,2,3

1 2 4 .

i j

ij ij

i

j

kM v v
g i j

c cc r

v
i j

c

v
i j

c

kM
i j

c r


 

    
 

  

  

 
     

 

 (1.84) 

The metric tensor has the form 

 

 

 

 

 

ij ij

i

j

2

, i, j 1,2,3,4

v '
, i 1,2,3; j 4

c

v '
, i 4; j 1,2,3

c

v '
1 , i j 4 .

c

   

  

  

 
     

 
 

 (1.85) 

We get from the definition (1.74), (1.85) and (1.61) for i,j=1,2,3 

       
1/2 4 1/2 43 3

2
1 2 .

k kij jm i im j
mk mk

ij

S g x T M d x g x T M d x

kM

c r

   



   

 
  
 

 
 

Hence, it holds 
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2

1 2
kM

S
c r


 

  
 

. (1.86) 

We have by the substitution of (1.86) into the relation (1.83a)  

 
2

2 2

'
1 2 1 2

'

d kM v kM
S S

dt cc r c r

    
              

. 

By the use of the conservation law of energy 

2

2

1 '

2

v kM
const

c c r
   

we get 

  
d

S S
dt

   . (1.87) 

Equation (1.87) gives the precession of the spin of a test particle with 

constant angular velocity. It agrees with the corresponding result of general 

relativity [Sch 60]. The angular momentum of a gyroscope processes without 

changing in magnitude. The results about the spin angular momentum and the 

gyroscope agree with those of general relativity.  

All these results of the sub-chapters 1.8 and 1.9 can be found in [Pet 91]. For 

experimental technical problems compare Will [Wil 81]. 

The results of chapter I about the theory of gravitation in flat space-time can 

be found in the articles of Petry [Pet 79, 81a, 82,93b]. 

It is worth to mention the article          of Cahill who has studied a theory 

of gravitation with application to cosmology by a method which is totally 

different from general relativity and any bi-metric theory.  

1.10  Approximate Solution in Empty Space 

By the use of general relativity approximate solutions in empty space are 

received by linearization of the non-linear equations. This can also be 

considered by the use of flat space-time theory of gravitation as will be seen in 

sub-chapter 2.2. Therefore, we will study the linearization of the gravitational 

field. We start from the gravitational theory in flat space-time (1.23) together 
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with the conservation of the whole energy-momentum (1.25). Formula (1.23b) 

of the field equations implies by the use of covariant differentiation, the 

conservation law (1.25a) and the use of the pseudo-Euclidean geometry (1.5) 

 
 

     
 
 

 

 

 

     
       (i=1-4). (1.88) 

Relation (1.88) gives by the use of linearization, i.e. 

              

the linearized expression 

  
 

       
 

   

 

          

Therefore, relation (1.88) can be written in the form 

    

   

 

       
 

        
 

 

 

                  

The operator in front of the bracket is the wave operator. Hence we get 

    
 

        
 

 

 

             (i=1-4). (1.89) 

Relation (1.89) is identical with the result of general relativity (see 

e.g.          p. 256,                 which is used for many applications.The 

derivation of relation (1.89) in empty space (no matter) uses the fact that in 

empty space a gravitational field exists which must be considered. The quite 

different study of linear approximations of the gravitational field by flat space-

time theory of gravitation and general relativity follows from the different 

sources in the theories. Flat space-time theory of gravitation has the whole 

energy-momentum as source whereas general relativity has only the matter 

tensor. In general relativity the energy-momentum is not a tensor which implies 

many difficulties (see the extensive study of Logunov and co-workers (see e.g. 
                     ).  

A comparison of the theory of gravitation in flat space-time and the theory of general 

relativity is given in [Pet 14a]. 
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Static Spherical Symmetry 
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In this chapter the theory of gravitation in flat space-time stated in the 

previous chapter I is applied to static spherically symmetric problems with the 

matter tensor of a perfect fluid. 

It is useful to introduce spherical polar coordinates  , ,r    with 

 1 sin cosx r   , 2 sin sinx r   , 3 cosx r  . (2.1) 

We get by simple computations 

 11 1  , 2
22 r  , 2 2

33 sinr  , 44 1   , 0ij   i j . (2.2) 

Then, we have 

 
1/2 2 sinr   . 

The non-vanishing Christoffel symbols of the metric are 

 

1 2 2 3 3 1 2
22 12 21 13 31 33

2 3 3
33 23 32

1 1
, , , sin ,

sin cos , cot

r r
r r



  

             

      

. (2.3) 

2.1  Field Equations, Equations of Motion and Energy-

Momentum 

The potentials are written in the form 

 
 

   

   

11 22 33

2 2 2

44

, , ,
sin

, 0,ij

g r g r
g f r g g

r r

g h r g i j


  

   

 (2.4a) 

It follows 

 

 

2 2 2

11 22 33

44

1 sin
, , ,

1
, 0,ij

r r
g g g

f g g

g g i j
h


  

   

 (2.4b) 

We get 
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  
 

2
1/2

1/2

sinr
G

g fh


  , 

 

1/2

1/2

1G

g fh

 
 

 
, (2.5) 

For a body at rest we have 1 2 3 0,u u u    i.e. it follows from relation (1.13) 

 4 1/2u ch . (2.6) 

Then, the matter tensor of a perfect fluid (1.28) is given by 

 

   

 

 

2

2

, 1,2,3

, 4

0.

i

j
T M pc i j

c i j

i j



  

   

 

 (2.7) 

We get from the equations (1.21a) and (1.9) by the use of (2.4) and (2.5) the 

energy-momentum tensor of the gravitational field 

 

     

 

   

 

1 2

1

1 2

1
, 1

16

1
, 2,3

16

1
, 4

16

0,

i

j
T G L L i j

L i j

L L i j

i j







    

  

   

 

 (2.8) 

Here, 

 
 

2 2 22

1 1/2

' ' ' 1 ' ' '
2 2

2

f f g h f g h
L

f g h f g hg fh

       
                     

, (2.9a) 

 
 

2

2 2 1/2

4 f f g
L

fr g fh

 
   

 
, (2.9b) 

 1 2L L L  , (2.9c) 

where the prime   denotes differentiation with regard to the distance r . The field 

equations (1.24) with 0   give by the use of the covariant derivatives the 

following three equations: 
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   

 
2 2

2 2
12 1/2 2 1/2 2

1 ' 2 1
2

2

d f f f f g
r L c p

dr fr r fg fh g fh
 

  
      
 
 

, (2.10a) 

 
   

 
2 2

2 2
22 1/2 2 1/2 2

1 ' 1 1
2

4

d f g f f g
r L c p

dr gr r fg fh g fh
 

  
      
 
 

, (2.10b) 

 
 

 2 2

2 1/2

1 '
2 3

d f h
r c p

dr hr g fh
 

 
    
 
 

. (2.10c) 

The conservation law of the energy-momentum (1.25a) implies 

  2
2 1 2

4
16 0

d d
L L L c p

dr r dr
    . 

It follows by multiplication with 3r  

    3 2 2 3
2 1 1 2 16

d d
r L L r L L c r p

dr dr
      . (2.11) 

The equations of motion (1.29a) yield 

 
1 ' ' 1 '

2
2 2

d f g h
p p

dr f g h


 
    

 
. (2.12) 

In addition to the equations (2.10), (2.11) and (2.12) we have an equation of 

state 

  p p  . (2.13) 

The natural boundary conditions are for     

   1,f r    1g r  ,   1h r   (2.14a) 

and for 0r   

 
     

2 2 2

1/2 1/2 1/2

' ' '
0, 0, 0

f f f g f h
r r r

f g hg fh g fh g fh
   . (2.14b) 
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2.2  Gravitational and Inertial Mass 

Let us assume a spherically symmetric star with radius 0r . Then, the 

boundary condition of the pressure has the form  

  0 0p r  . (2.15) 

The mass and the pressure are defined by 

  
0

2

0

4

r

M r r dr   ,  
0

2

0

4

r

P r p r dr  . (2.16) 

We get from (2.10c) with the aid of the boundary conditions (2.14) for r > 0r  

 
 

 2

2

3'
2

k M Pf h
r

g fh h c


   (2.17) 

where (1.14) is used. Equation (2.17) gives by integration and the boundary 

conditions (2.14) for r > 0r  

  
 

2 2

3 1 1
1 2

k M P
h r O

rc r

  
    

 
. (2.18) 

Equation (2.18) implies the gravitational mass 

 3gM M P  . (2.19) 

The inertial mass iM  is given by 

     4 42 2

4 4
4iM c T M T G r dr    (2.20) 

It follows by the use of (2.7), (2.8) and (2.16) 

  
2

2
1 2

0
16

i

c
M M r L L dr

k



   . (2.21) 

We put by virtue of (2.14a) and r >> 0r  
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2

1
1 2f O

r r

  
    

 
,

2

1
1 2g O

r r

  
    

 
. (2.22) 

Equation (2.10) gives by integration and the use of (2.14b) 

   

 
 2 2 2

1/2 1/2 2

0 0

'
2 2

r r
f g gf g f

r dr c r p dr
g fg fh g fh

 


    . 

It follows for r   with the aid of (2.18), (2.22) and (2.16) 

 
 

 
 

1/2 2 2

0

f g gf k
dr M P

f cg fh





   . (2.23) 

The existence of the integral of equation (2.23) gives by using (2.18) and 

(2.22)   ,i.e., we have 

 
2

1
1 2f O

r r

  
    

 
, 

2

1
1 2g O

r r

  
    

 
. (2.24) 

We assume the natural boundary conditions as r   

3
1 0r L  ,   3

2 0r L  ,   3 0r p  . 

Then, equation (2.11) implies by integration  

 

     

 

3 2 2 3
2 1 1 2

0

2 2

0

16

 48 .

r

r

r L L r L L dr c r p r

c r p r dr





   







 (2.25) 

Hence, we get for r   by the use of (2.18), (2.24), (2.15) and (2.16) 

  2
1 2 2

0

48
k

r L L dr P
c



   . (2.26) 

Substituting equation (2.26) into (2.21) it follows with equation (2.19) 

 3i gM M P M   , (2.27) 
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i.e., inertial and gravitational mass are identical.  

In general relativity the definition of inertial mass gives difficulties by virtue 

of the non-covariance of the energy-momentum of the gravitational field (see 

e.g. [Dem 82]). 

In particular, equation (2.26) can be rewritten 

  
42

2 4

0

4
3r T G dr P

c




  . (2.28) 

Equation (2.12) together with (2.10c) implies that there exists no spherically 

symmetric star without pressure. 

We get by a suitable linear combination of the equations (2.10) and by 

integration using the boundary conditions (2.14b) 

 
 

   

2

1/2

2 2 2
1 2

0 0

' ' '
2 3

1
24 .

2

r r

f f g h
r

f g hg fh

r L L dr kc r p r dr

 
  

 

    

 (2.29) 

Hence, we have for r   by virtue of (2.26), (2.17) and (2.24) 

  
2 2

3   g

k k
M P M

c c
 . (2.30) 

Put 

 
2

gkM
K

c
  (2.31) 

then, we have for r >> 0r  

 

2 2

2

1 2 , 1 2 ,

1 2 .

K K K K
f O g O

r r r r

K K
h O

r r

      
                    

  
        

 (2.32) 
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Equation (2.23) gives 

 
 

 
1/2 2 2

0

4
f g gf k

dr P
f cg fh




  . (2.33) 

The gravitational field in the exterior of the spherically symmetric star with 

pressure is given to the first order approximation by (2.32), i.e. by one mass, 

namely the gravitational mass gM . This is similar to Einstein’s general theory 

of relativity in contrast to Rosen’s bi-metric gravitation theory where the field is 

described by two mass parameters gM  and 'M  with 'gM M  for non-

vanishing pressure. 

2.3  Gravitational Field in the Exterior 

Let us study the gravitational field in the exterior of the star, i.e. r > 0r . We 

have from (2.10a), (2.10b) and (2.17) with the definitions (2.19) and (2.31) 

 
   

2 2
2

12 1/2 2 1/2 2

1 ' 2 1

2

d f f f f g
r L

dr fr r fg fh g fh

  
    
 
 

 (2.34a) 

 
   

2 2
2

22 1/2 2 1/2 2

1 ' 1 1

4

d f g f f g
r L

dr gr r fg fh g fh

  
    
 
 

 (2.34b) 

 
 

2

1/2

'
2

f h
r K

hg fh
  . (2.34c) 

Substituting  

/K r   

into equations (2.34) we get by elementary computations  

 

2 22

2

2 1 1
1

4 4

f f h g hd g

d f f f h g h

    

 

       
                   

 (2.35a) 
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2

2

2 1 1
1

2 2

g g f g g hd g g

d g f f g f g g h

     

 

    
         

    
 (2.35b)  

 

1/2

2
h h

g
h f

  
  

 
 (2.35c) 

where, the index   means the derivative relative to  . Put 

      exp , exp , expf x z g y z h z      . (2.36) 

Then, it follows from (2.35) 

        
2

2

2 1
1 exp 2 4exp 2

4
x y x y x x 


       (2.37a)  

       
2

2

2 1
1 exp exp

2
y y x y x x y y   


        (2.37b)  

  2exp / 2z y x    . (2.37c) 

The equations (2.35) and (2.32) imply for 0   

     3 2 2, , 2x O y O z O        . 

Substituting the approximations of x  and  up to the order four in   into 

the equations (2.37a) and (2.37b) we get by elementary calculations 

 3 41
2

6
x A   , 2 3 42

3
y A      (2.38a) 

where A  is an arbitrary parameter which must be fixed by the interior solution. 

Equation (2.37c) together with (2.38a) yields  

 
3 42

2
3

z A      . (2.38b) 

Finally, we obtain from (2.36) and (2.38) up to order four in K

r

: 

y
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  
2 3 4

13
1 2 2 2 2 3

6

K K K K
f A A

r r r r

      
            

      
 (2.39a) 

  
2 3 4

31
1 2 3 4 3

6

K K K K
g A A

r r r r

      
            

      
 (2.39b) 

  
2 3 4

1 2 2 2 2
K K K K

h A
r r r r

     
          

     
. (2.39c) 

Elementary computations give up to order five in K 

 

2 4 5

1 4 6 7

4 5

2 6 7

2 4 5

4 6 7

8 8 40 ,

4 24 ,

8 12 64 .G

K K K
L A

r r r

K K
L A

r r

K K K
L A

r r r

   

  

   

 (2.40) 

It is easily proved that the conservation law of energy-momentum (2.11) 

holds to the considered accuracy. 

Einstein’s theory gives in harmonic coordinates 

 

2 3 4
1 /

1 2 2 2 2
1 /

E

K r K K K K
f

K r r r r r

      
          

      
 (2.41a) 

 
 

2 3 4

2

1
1 2 3 4 5

1 /
E

K K K K
g

r r r rK r

     
          

     
 (2.41b) 

 

2 3 4
1 /

1 2 2 2 2
1 /

E

K r K K K K
h

K r r r r r

      
          

      
. (2.41c) 

The solution in the exterior of the star by Einstein’s theory does not contain a 

free parameter. The results of the two theories agree for f  and g  up to the 

order two and for h  up to the order three in the case 0A  and for 0A  the 

agreement of the solutions for f  and g  is up to the order three and for h  up 

to the order four. Hence, we have high agreement of the exterior solutions of 

both theories. 
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We will now give a lower limit for the pressure of stars on the assumption 

that 0/ rK  is small. Let us assume a non-negative density of the gravitational 

energy in the interior of the body, i.e. 

 
4

4
0T G   for 0rr   

then, it follows by the use of (2.26), (2.8) and (2.40) 

     
0

4 42 2

2 24 4

0

2 2 4 5

3 4
0 0 0

4 4
3

8 4 16 .
16

r

P r T G dr r T G dr
c c

c K K K
A

k r r r

 
 

   

 
   

 

 
 

Hence, we have by the use of (2.31) 

 

3 4

0 0 0

1
2 6

2 g

K K K P
A

r r r M

   
     

   
. (2.42) 

Inequality (2.42) gives for our Sun ( gM 3310993.1  , 106.96 10r cm   ) 

7/ 3.6 10P M 
    . 

Numerical methods are used to obtain the solution in the exterior of the star 

for large values of /K r  . For small   210
 
the solutions (2.38) and 

(2.39) are used. The system of the differential equations (2.37) is numerically 

solved by the use of Runge-Kutta methods for different values of the parameter 

A . There are two different types of solutions: (1) regular solutions, i.e. for all 

0   the functions f , g and h  exist and are positive. This is the case for all 

values 2.0A . (2) Singular solutions, i.e. it exists a positive value c depending 

on A such that ,f g and h  do not exist or vanish at c . Case (2) arises for 

small positive and all negative values of A . 

2.4  Non-Singular Solutions 

We will now study the solution in the vicinity of the singularity 
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c

f

f

 

 



, 

c

g

g

 

 



, 

c

h

h

 

 



 (2.43) 

with suitable constants  ,   and  . This gives near the singularity  <
c  

 
0

( )c

A
f

 



, 

0

( )c

B
g

 



,

0

( )c

C
h

 



 (2.44) 

with some constants 0A , 0B  and 0C . We get by the substitution of (2.43) and 

(2.44) into the equation (2.35c) 

 
 

1/2

0
0 /2

0

1
2

 

 
  

  
a

c c

C
B

A  



   
 

implying 

   / 2 1     ,  
1/2

0 0 02 /B C A  > 0 . (2.45a,b) 

It follows by the substitution of (2.43) and (2.44) into (2.35b) and the use of 

(2.45a) 

   <1 . (2.45c) 

We have from (2.35a) 

 2 21 1

4 4
      . (2.45d) 

The equations (2.45a) and (2.45d) yield by elementary calculations  

21 3 4 2 0       

Hence, we get 

 0 , 

21 3 4

2

 




 
 , 

21

2







 . (2.46) 

We obtain by (2.46) and (2.45c) 

 > 0  
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implying by the use of (2.46) and (2.45) 

 0 <  <1 . (2.47) 

Hence, we have 

 
  1 3 1

2

 




 
 , 

21

2







 , 0 <  <1  (2.48a) 

 

1/2

0
0

0 2

C
B

A

 
 

 
. (2.48b)  

Therefore, the constants   and   are always positive whereas   is 

positive for  < 3/1 , negative for  > 3/1  and zero for 3/1 . The radial 

velocity of light 
Lv  

near the critical value c  is given by 

  
1/21/2

10

0

0l c

Af
v c c

h C


 

  
     

   
 (2.49) 

for c   by the use of (2.48a). 

The solutions (2.44) cannot be continued to  >
c  by virtue of (2.48a). This 

is similar to Rosen’s bi-metric theory of gravitation  74Ros . Therefore, static 

spherically symmetrical stars with radius 0r < / cK  cr  cannot exist in this 

gravitational theory. 

We will now study a static spherically symmetric star with the radius 0 cr r . 

We get from (2.43), (2.44) and (2.48) for crr   

 

2
2

1/2 2 2

' 1 3 4
2

1

gkMf f
r

f cg fh

 



 



 

 

2
2

1/2 2 2

' 2
2

1

gkMf g
r

g cg fh







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 
2

1/2 2

'
2

gkMf h
r

h cg fh
 . 

Therefore, we have as crr   

 

2
2

1/2 2 2

' ' ' 1
2 3 8

1

gkMf f g h
r

f g h cg fh

 



   
   

 
. 

The left hand side of (2.29) is continuous, i.e. this equation gives 

02
2 4

4
2 2 2 2

0

1
8 8 24 24

1

r G
gkM kP kP

r T dr
c c c

 




   
      

  
 . 

Hence, we get by virtue of (2.19)       

    21 3 1 2gM P       . (2.50) 

The assumption 0P  implies by virtue of (2.48a) that the mass 0gM . 

Therefore, we have P > 0 . Relation (2.50) can be rewritten  

    2 21 1 4 7      M P P    < 0 , 

i.e. we obtain   

 M < P . (2.51) 

An equation of state with velocity of sound sc  has the form 

2

sp c  ,   2 1sc  . 

Hence, we get by integration the inequality 

P M  

which is in contradiction to (2.51). 

Therefore, every static spherically symmetric star has a radius 0r > / cK  , i.e. 

static spherically symmetric bodies have no singular solutions. 



A Theory of Gravitation in Flat Space-Time 
 

40  http://www.sciencepublishinggroup.com 

In empty space a singularity at a Euclidean distance from the centre can exist. 

The radius of this singular sphere is smaller than the radius of the body. 

Hence, there is no event horizon, i.e. static black holes do not exist. Escape of 

energy and information is possible, i.e. no contradiction to quantum mechanics 

(see [Pet 14b]). It is worth to mention that the singularity -if it exists- is at a 

Euclidean distance and is not a singularity of the coordinate system as by 

general relativity. 

2.5  Equations of Motion 

In this sub-chapter the equations of motion of a test particle in a spherically 

symmetric gravitational field are studied. 

Let us assume that the particle is moving in the plane given by the 

coordinates 1x  and 2x , i.e. / 2  . The velocity is given in spherical polar 

coordinates by 

 ,0,
dr d

dt dt

 
 
 

. (2.52) 

The equations (1.30) for a test particle can be written by the use of (2.4b)   

 

2 2

2

2 2

1 1 ' ' '
2

2

d dr dt f dr r g d h dt
r c

dt f dt d f dt g g dt h d



 

       
                   

 (2.53a) 

 
2

0
d r d dt

dt g dt d





 
 

 
 (2.53b) 

 
1

0
d dt

dt h d

 
 

 
. (2.53c) 

The relation (1.13) has the form 

 

2 2 22 2
2 1d c dr r d

c
dt h f dt g dt

      
       

     
. (2.54) 

Equation (2.53c) yields 
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dt

h
d



  (2.55) 

where   is a constant of integration. Equation (2.53b) implies with a further 

constant of integration 

 2 d dt
r g

dt d





 . (2.56) 

The last two relations give 

     

  
 

 

 

 

 
 (2.57) 

The equations (2.55) and (2.54) yield   

 

2 22 2

2

1 1
1

c dr r d

h h f dt g dt





     
       

     
. (2.58) 

Relation (2.57) corresponds to the second Kepler law. The equations (2.58) 

can be written 

 

2 2

2 2

2

1
1

dr f d f
r c

dt g dt h h





     
       

     
. (2.59) 

Inserting (2.57) into equation (2.59) we get  

 

2 2

2

2 2 2

1 1
1

dr fg f
c

dt r h h h



 

     
        

     
. (2.60) 

The equation (2.60) is a differential equation of first order for  tr . Knowing 

the solution of (2.60) we have a first order differential equation (2.57) for 

calculating  t . These two functions describe the motion of the test particle in 

the spherically symmetric gravitational field. We will now give the differential 

equation which describes the trajectory of the test body. We eliminate the time 

t  in the equations (2.57) and (2.59). Furthermore, we put  

 1/ r  . (2.61) 

It follows  
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2d g

dt h

 



  

and 

2 2

4 2 2

2 2

1
1

d fg f
c

dt h h h

 
 

 

      
                

. 

The last two equations give 

 

2 2

2 2

2 2

1d f f
c h

d g g

 


  

     
        

    
. (2.62) 

The differential equation (2.62) describes the inverse   of the distance r  as 

a function of the angle  . 

2.6  Redshift 

In this sub-chapter the redshift of spectral lines in the gravitational field is 

studied. It follows by virtue of (1.8) for an atom at rest in the gravitational field 

the following relation between proper -time and absolute time  

     
1/21/2

44 /d g dt dt h r     (2.63) 

where (2.4b) is used. This relation gives for the frequency  e r  of light 

emitted from an atom in the gravitational field at distance r  from the centre of 

the body 

     
1/2

0 /e r h r   (2.64a) 

where 0  is the frequency of light emitted from the same atom at infinity, i.e. 

neglecting gravitation. By virtue of Planck’s law E h  where h  is the Planck 

constant we get for the emitted energy  

     
1/2

0 /E r E h r . (2.64b) 

This relation follows also by the definition of the energy 
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4

k

k

dx
E g

d
   (2.65) 

and the use of (2.4b) and (2.63). Let us assume that the atom at distance 
1r  

emits light which moves in the gravitational field to the distance 
2r . By virtue 

of (1.30) the energy of light is not changing in the stationary, gravitational field, 

i.e. the energy (resp. frequency) of light received at 
2r  is 

     
1/2

1 0 1/r r h r  . (2.66) 

Light emitted from the same atom at distance 
2r  

has the frequency 

     
1/2

2 0 2/e r h r  . (2.67) 

Hence the last two relations imply 

         
1/2

2 1 1 2/ /e rr r h r h r   . (2.68) 

The redshift z  is then given by 

 
 

 

 

 

1/2

2 1

1 2

1 1 1
er

e r

r h r
z

r h r



 

 
       

 
. (2.69) 

By virtue of (2.39c) we get to first order approximation 

 2

1 2 1 2

1 1gkMK K
z

r r c r r

 
    

 
, (2.70) 

i.e. light emitted at 
1r  and received at 

2r >
1r  gives a redshift z  stated by (2.70) 

to the first order accuracy in agreement with the result of general relativity. 

The result (2.70) is by the authors of article          experimentally verified 

in the gravitational field of the Earth with an altitude of       by the use of the 

Mössbauer-effect to an accuracy of    . 
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2.7  Deflection of Light 

We consider a light ray coming from  1 1,r  , passing the nearest point  0 ,0r  

to the centre of the body and then moving to the observer at  2 2,r  . The 

equations which describe the motion of this light ray are given in the sub-

chapter 2.6. We start from the differential equation (2.62). For the nearest 

distance 0r  
of the light ray to the centre of the body we have  

0

0
d

d







 
 

 
 

implying by the use of (2.62) and (2.39) to first order approximation in K  

 
 

2

22
00

1 1
1 4

K

rr c



 

  
    

   
. (2.71a) 

Furthermore, we get for a light ray 0d   by virtue of (2.55) 

 
1

0

 . (2.71b) 

Substituting the last two relations into equation (2.62) we receive to the first 

order approximation 

 

2

2

2

0 0

1
1 4 4

d K
K

d r r


 



  
      

   
. (2.72) 

The solution of this differential equation with the initial condition

  0 00 1/ r  
 
can be given analytically. We have 

0

1/2

2

2 2

0 0 0

1
4 1 4

K K
d

r r r





   



  
        

  


 

Elementary integration and (2.61) give 

 0

0 0

/ 2 1 2 cos
K K

r r
r r


  

     
  

. (2.73) 
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Inserting the starting point and the end point of the light ray we have for 
1,2i   

 0

0 0

/ 2 1 2 cosi i

K K
r r

r r


  
     

  
. (2.74) 

Put for 1,2i   

 
2

i i


 

 
   

 
 (2.75a) 

where the upper (lower) sign stands for 1i   2i   then we get from (2.74) to 

first order in K  

 
0

0

2i

i

rK

r r
   . (2.75b) 

Let 
i  be the angle between the tangent at the light curve in the point  ,i ir   

and the 1x  -axis we have  

 
1 1

cos sin / sin cosi i
i i i i i

i i i i

dr dr
ctg

r d r d
    

 

   
     
   

. 

We have by virtue of (2.71) with (2.61) 

2 2

2

0 0

1 1 4 4i i
i

i i

dr r K K
r

d r r r

      
          
       

. 

The last two relations together with (2.75) imply by elementary computations 

0

2i

K
ctg

r
  . 

The deflection of light is given by 
1 2.      Hence, we have  
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     1 2 1 2

2 1

0

/ 1

4 .

tg tg tg tg tg

ctg ctg

K

r

     

 

     

 



 (2.76) 

The formula (2.76) gives the deflection of light and it is identical with the 

result of general relativity to the studied approximation.  

2.8  Perihelion Shift 

We consider now a test particle in the orbit of a spherically symmetric body 

with velocity 

      
  

  
 

 
   

  

  
 

 
   .   

Hence, we get from (2.58) and (2.39) to first order approximation to the 

accuracy of   
 

   : 

 
 

      
 

 
  

   

 
 

 
    

 

    
. (2.77) 

Here, the conservation law of energy of the test particle in the gravitational 

field is used to Newtonian accuracy and   is the classical energy satisfying 

           (2.78) 

We get from (2.62) by the use of (2.77), (2.78) and (2.39) to second order in 

  

  
  

  
 

 
        

 

 
 

 
 

 

                  (2.79) 

Put 

             
 

 
 

 
        

 

 
 

 
       

 

  
 

 

 
 

 
   . (2.80) 

The analytic solution of (2.79) with the initial condition          has the 

form 
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        (2.81) 

The solution is an elliptic curve, i.e., there exist two values         such 

that the right hand side of (2.79). Hence, 

                            

This yields 

                        (2.82) 

Equation (2.81) gives for a full period the angle 

   
  

  
               

 

 
 

 
    

Therefore, we get a perihelion shift 

                 
 

 
 

 
 (2.83) 

in the direction of the motion of the test particle. 

An elliptic curve with the semi-major axis  and the eccentricity  satisfies 

 

  
           

 

  
          

It follows by (2.82) 

 

       
 

 

      
 

 

      
                

 

 
 

 
   

Inserting this relation into (2.83) we have 

     
   

         
  (2.84) 

Hence, we get for the perihelion shift of a test particle in a spherically 

symmetric gravitational field the same result as by Einstein’s general theory of 

relativity.  
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2.9  Radar Time Delay 

We consider a light ray starting from an observer at        , passing the 

spherically symmetric body at        and reflected at a body with coordinates 
        and then travelling back to the observer on the same way. We will 

calculate the needed time and compare it with time when there is no 

gravitational field. 

We start from equation (2.60) for a light ray, i.e., the relations (2.71) hold. 

Hence, it follows to first order in   

 
  

  
 

 
    

  

 
 

 
      

 

  
 

  

      

 
   

Inserting (2.39) we get  

 
  

  
 

 
   

  

 
 

 
      

 

  
     

 

 
         

 

 
    

Therefore, the time for the propagation of a radio signal from        to 
         is  

          
 

 
      

 

 
 

  

  
         

where 

             
 

 
    

      
 

  
  

   

   

Elementary integration gives 

          
 

 
                                    .  

We get to first order in   

         
 

 
    

    
  

   
    

     
     

 
   

  

                                  
    

  
   

       

      
 

 
    

 

 

  
 

  
         

   

  
 . 
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The time of propagation from         to         is 

 

                                            

 
 

 
       

 

 
 

  
 

  
 

  
 

  
         

     

  
                  (2.86) 

The Euclidean distance between        and         is 

                                              

                              
 

 

    

     
       

   

where (2.75a) is used. Inserting (2.75b) it follows to first order in   

        
 

 

  
 

     
 

  

  
 

  

  
  

  
 

     
      

Hence, we get for the time delay    of the radio signal from         to 

        and back 

               
 

 
       

    

  
 . (2.87) 

Formula (2.87) is identical with the corresponding result of general relativity 

in the case when harmonic coordinates are used whereas when Schwarzschild 

coordinates are considered additional expressions appear (see e.g.          
          . In the theory of gravitation in flat space-time the distance is always 

the Euclidean one whereas in Einstein’s general theory of relativity we have a 

non-Euclidean geometry implying the mentioned difficulty. Experimental 

results confirm the result (2.87) to high accuracy (see e.g.            

These results about static spherically symmetric stars with the aid of theory 

of gravitation in flat space-time can be found in the articles                    

Summarizing, the results of flat space-time theory of gravitation for static 

spherically symmetric stars agree with the corresponding ones of general 

relativity to high accuracy by virtue of weak gravitational fields. 

2.10  Neutron Stars 

To calculate neutron stars we have to solve the differential equations (2.10) 

and (2.12) together with an equation of state (2.13). The boundary conditions 
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are given by (2.14). The boundary    of the neutron star follows from (2.15) and 

the mass is given by (2.19) together with (2.16). This problem seems to be not 

solvable analytically. Numerical methods must be used. The details of the 

numerical computations can be found in the paper         and only the results 

will be given. Several equations of state are considered. For        

          the table of          is used and then for                  the 

equations of state are continued by the tables of several authors The results of 

the flat space-time theory of gravitation are given in the following tables where 

the author of the continued table is stated. 

Table 1.          

           Geben Sie 

hier eine Formel ein. 

g/cm³ 

           

g/cm³ 
                           km 

0.859 0.085 0.765 0.772 1.32 1.05 10.62 

2.010 0.547 0.546 0.573 1.90 2.35 10.33 

3.160 1.268 0.474 0.513 2.23 2.69 9.58 

5.350 3.071 0.426 0.475 2.51 2.77 8.64 

Hence, we get with the equation of state of          a maximal mass of 

2.77   with a radius of         and a central density of                 . 

Table 2.          

           

g/cm³ 

            
g/cm³ 

                           km 

1.149 0.315 0.526 0.553 1.99 2.88 12.03 

2.132 0.974 4.425 0.469 2.54 3.61 11.33 

3.060 1.651 0.405 0.455 2.69 3.64 10.82 

4.547 2.785 0.399 0.452 2.73 3.53 10.36 

8.360 5.829 0.401 0.455 2.69 3.40 10.04 

This equation of state gives a maximal mass of a neutron star of 3.64   with 

a radius of 10.82 km and a central density of matter of           

   . 

In the paper          several equations of state are studied and the maximal 

mass of neutron stars is calculated by the use of Einstein’s general theory of 

relativity. Here, we will give for two equations of state the maximal mass, the 

radius and the density of matter in the centre of the star by flat space-time 
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theory of gravitation. In brackets the corresponding values of general relativity 

are stated. 

                ,                       ,   

                                     .  

                                       ,  

                    .  

We see that although the radius of the neutron star has in both theories about 

the same value but the maximal mass can be greater in flat space-time theory of 

gravitation than that resulting by the use of general relativity. 

At last we will calculate neutron stars with a stiff equation of state, i.e. 

                      

where    and    are taken from the table          with 

                                        ,  

                                        .  

For         the equation of          is used again. We get the maximal 

mass, the approximate radius and the central density of matter 

          ,                                     .  

          ,                                  .  

Again we remark that the maximal mass of a neutron star can be greater than 

that received by general relativity. The maximal mass of a neutron star 

calculated by Einstein’s theory with a stiff equation of state is               .  

Summarizing, the mass of any star estimated by observations may suggest a 

black hole for this star by general relativity whereas the star can be a neutron 

star by the use of gravitation in flat space-time. 

Details about the numerical calculations and further results on neutron stars 

can be found in the paper         . Results on neutron stars based on Einstein’s 

theory can be found e.g. in the books          and         . Static neutron 

stars which have the form of a geoid are numerically computed and can be 

found in          based on the theory of gravitation in flat space-time. 
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In this chapter the theory of gravitation in flat space-time is applied to non-

static, spherically symmetric bodies. The results of this chapter are contained in 

the article            

3.1  The Field Equations 

The line-element is given by the metric (2.2). The proper time can be written 

 

2 2 2 2 2 2

2

( ) ( , )( ) ( , ) (( ) sin ( ) )

( , )( ) 2 ( , )

cd A r t dr B r t r d d

C r t dct D r t drdct

      

 
 (3.1) 

By a transformation of time 

             (3.2) 

we can eliminate the expression with       With the notation                   

the line-element can now be written in the form 

                    (3.3a) 

where 

 

2 2 2 2 2

11 22 33 44

14 41

1 ( ) , , sin , ( )

, 0( )ij

F F
r r

r ct

F F
else

r ct

    

  

 
    

 

 
  

 

 (3.3b) 

The proper time is now given by 

                     (3.4a) 

where 

 

2

11 22

2 2

33

44

1 ( , ), ( , )

sin ( , ),

1 ( , ), 0( )ij

g f r ct g r g r ct

g r g r ct

g h r ct g i j



 



   

 (3.4b) 

with new functions                                  The energy-momentum 

tensor of matter described by perfect fluid (1.28) where     and      are 
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functions of    and   . We have by virtue of spherical symmetry for a collapsing 

body 

          (3.5) 

It follows with    
    

  
 and 

     
       

by virtue of (3.5) and (3.4b) 

           
 

 
 

  

 
 

 

   

   

    (3.6) 

Hence, we consider a non-static spherically symmetric body with only a 

radial velocity. The energy-momentum tensor of matter (1.28) has by virtue of 

(3.4), (3.5) and (3.6) the form 

        
       

 

 
                   

(3.7) 

                        ,             

                             
 

 
 

  

 
 

 

     ,          

                            
 

 
   

 

 
 

  

 
 

 

  

   

             

                           

 
     

 

 
 

  

 
 

 

  

   

             

                             

Put for any function         define 

          ,               ,                         .  

For       put 
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   

   

2 2
(4) (4)

( ) ( ) ( ) ( ) ( ) ( )

2 2
(4) (4)

2 2
(4) (4)

( ) ( ) ( ) ( ) ( ) ( )

2 2
(4) (4)
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1
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2

i j i j i j

ij

i i i j j j

F h F hf f g g
L

f f g g F h F h

F h F hf g f g

f g f gF h F h
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  
      
    
  

 (3.8) 

The energy-momentum tensor (1.35) of the gravitational field can be written 

by virtue of (3.4b) and (3.3b) 

     
  

 

                

(3.9) 

   
 

 
    

 

 
    

  

 
 

     

    
 

 

   
     

    
 

 

 
 

    
      

  
 

 

 
 

    

    
 

 

    

(i=j=1) 

         
 

 
    

 

 
    

  

 
 

     

    
 

 

   
     

    
 

 

             

           
 

 
    

 

 
    

  

 
 

     

    
 

 

   
     

    
 

 

 
 

    
      

  
 

 

 
 

    

    
 

 

    

(i=j=4) 

               
  

 

     

    

     

    
      (i=1, j=4)  

                 
     

    

     

    
     (i=4, j=1)  

               (else) 

We get from (1.21b) with (1.10) 

      
    

 

  

 

              
   (3.10) 

Let us define the following differential operators    and    of order two: 

       
 

      
 

 

  
    

        

    

 
  

 

    
    

        

    

 
   (3.11a) 

      
 

      
 

 

  
     

                   
 

    
    

                   (3.11b) 
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Then, the field equations (1.24) with (1.23a) and (1.23c) have by virtue of 

(3.4b), (3.7), (3.9) and (3.10) the following form 

      
 

             
 

  

     

 
   

     

    
 

 

  
  

 
 

     

    
 

 

 
 

 
          

(3.12a) 

                                   
 

 
        

       
 

              
 

  

      

 
 

 

  

  

 
 

    

    
 

 

     +2            (3.12b) 

       
    

 

             
 

  

  

 
 

    

    
 

 

 
  

 
 

     

    
 

 

 
 

 
          

(3.12c) 

                                         
 

 
         

 

         
 

             
 

  

  

 

    

    
  

     

    
  

 

 

     

    
 

     

    
  

 

 
       

(3.12d) 
                                 

 

 
   

 

 
 

  

 
 

 

  

   

   

 

The field equations (3.12) are four partial differential equations for the four 

unknown functions       and   defining by the use of (3.4b) the gravitational 

potentials      . 

3.2  Equations of Motion and Energy-Momentum 

Conservation 

In flat space-time theory of gravitation we have in addition to the field 

equations the equations of motion (1.29a) and the conservation law (1.25a) of 

the whole energy-momentum. One of these equations follows by the other one 

and can be omitted. The equations of motion (1.29a) yield by the use of (3.3b), 

(3.4b) and (3.7) the two equations 
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Equation (1.25) implies the following two equations for the whole energy-

momentum 
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       (3.14b) 

The equations (3.12), (3.13) and (3.14) describe a spherically symmetric 

collapsing body where one of the equations (3.13) or (3.14) can be omitted. 

Furthermore,     is assumed for a star by virtue of its smallness. In general 

one replaces   by      where   denotes the specific internal energy and one 

adds the conservation law of matter (1.29b) and an equation of state of the form 

            (3.15) 

Hence, we have eight unknown functions             and    (   follows 

by (3.6)) depending on   and    and eight independent equations (3.12) (four 

equations), (3.13) or (3.14) (two equations), (1.29b) (one equation), and (3.15) 

(one equation). 

A solution of these equations for a collapsing star is at present time not 

known, also numerical solutions are not computed. Therefore, it is an open 

question whether black holes exist or not by the use of this flat space-time 

theory of gravitation. 

The corresponding equations by Einstein’s general theory of relativity are 

stated e.g. in the papers          and           They are simpler than the above 

ones because Einstein’s theory allows to reduce the number of unknown 

functions by suitable transformations. 
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In this chapter the theory of gravitation in flat space-time of chapter I will be 

applied to rotating stars. Rotating neutron stars (pulsars) are numerically 

computed. All the results of this chapter are contained in the work of          

where additional details can be found. 

4.1  Field Equations 

The line-element is again given by (1.1) with (2.2).The gravitational 

potentials are: 

 

2 2 2

11 22 33 44

12 21 34 43

1 sin 1
, , , ,

, sin , 0( )ij

r r
g g g g

f g d h

g g ar g g br g else


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    

    

 (4.1) 

Where the six functions             depend on   and   . Put 

     
 

  
          

 

  
    (4.2) 

Then, we get 

                        . (4.3) 

The energy-momentum tensor of matter is given by perfect fluid (1.28) where 

    and      are functions of    and  . Let us assume that the star is rotating 

with constant angular velocity about an axis then the four-velocity is 

       
  

  
 
  

  
 
  

  
  

  

  
           

  

  
  (4.4) 

Put 
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d

c
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h

   

 

  

 

 (4.5) 

Then, we get from relation (1.8) 

 
  

  
 

 

 
            (4.6) 

Hence, we receive from (4.4) the four-velocity  

                                          . (4.7) 
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Therefore, the energy-momentum tensor of matter (1.28) has by virtue of (4.1) 

and (4.7) the form 

 

2

2 2

1 1 2

2 2

2 1 2

2 1 2
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 (4.8) 

The formal representation of the energy-momentum tensor of the 

gravitational field with the aid of the potential functions             will now 

be stated. With the aid of complicated tensors     (i, j=1,2) with         

which contain quadratic expressions of first order derivatives of the potentials 

let us define new tensors 

    
        . (4.9) 

Then, the components of the energy-momentum tensor of the gravitational 

field needed subsequently for the field equations are 

     
  

         

   
   

    
    

         (i=j=1)  

(4.10) 

             
         

   
     

    
    

     (i=j=2)  

             
         

   
    

    
    

     (i=j=3)  

               
         

   
   

    
    

     (i=j=4)  

                                 
         

  
  

    (i=1, j=2)  

To get the field equations we put for any function         

        
  

  
       

  

  
        

   

    
 

   

    
  (4.11) 

Furthermore, we define for       
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In addition put 
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 (4.13) 

The field equations (1.24) with     give the following system of 

differential equations: 

       
 

  

 

  
             

 

   
   

 

   
      

(4.14) 
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Hence, we have six differential equations for the six potential functions 

              It is worth mentioning that the equation (4.14) for the function   

does not depend on the matter tensor (4.8) but it cannot be omitted because the 

equation implies that      
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4.2  Equations of Motion 

We get from the equations (1.29a) by the use of (4.1) and (4.8) the following 

two differential equations 
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 (4.15) 

The conservation of the mass (1.29b) is fulfilled by virtue of (4.4). 

The boundary of the rotating star is given by the condition  

 p        (4.16) 

implying that the boundary      depends on the angle   by virtue of the 

rotation of the star. Hence, spherical symmetry cannot hold. 

It is worth mentioning that we have two equations of motion (4.15) but by 

virtue of the equations of state of the form (2.13) we have only one function 

      . This is connected with the assumption that we consider a rigid body 

rotating about a fixed axis with constant angular velocity 
  

  
      Hence, a 

perfect fluid for a rigid body rotating about a fixed axis with constant angular 

velocity   and a velocity of the form (4.4) does not exist because gravitational 

forces work. This gives a solution to the paradox of a uniformly rotating disc 

noted by Ehrenfest and considered as justification for the introduction of non-

Euclidean geometry in general relativity theory of Einstein (see e.g.        ). It 

should be mentioned that any transformation of the pseudo-Euclidean geometry 

conserves the flat space-time metric. Therefore, we have for a body rotating 

about an axis to introduce additional velocities 
  

  
   and perhaps also 

  

  
   as 

functions of   and   which will give new differential equations. A simpler 
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possibility without great changes of the equations is the assumption that   is a 

function of   and   . 

Rotating stars studied with the aid of general relativity can be found e.g. in 

the article         . 

4.3  Rotating Neutron Stars 

In the following, we consider a rotating neutron star with constant angular 

velocity   approximately described by the equations (4.14) and (4.15). The 

results of this sub-chapter can be found in the work of         .  

To simplify the equations (4.14) and (4.15) all small functions   and   in the 

non-linear expressions are neglected, i.e. we consider to the lowest order a non-

rotating star studied in chapter 2.10 where all functions only depend on   . We 

put for any function  

                     . (4.17) 

The function       describes the non-rotating star and    is the small 

correction implied by the rotation. Then, we have by virtue of sub-chapter 2.10 

      ,                (4.18) 

For the angular velocity it is assumed that the expression 

   
 

 
       (4.19) 

The transformations 

    
  

  
 

   

   ,    
  

  
 

   

   (4.20) 

give new expressions    and    for pressure and density. In the following 

quadratic expressions of   and   are omitted. Then, these approximations imply 

with the aid of (4.3) and (4.2) 

   
  

         ,     
  

         . (4.21) 

Now, the equations of motion (4.15) can for         approximately be 

written by the use of (4.4) and by neglecting quadratic expressions of the small 

quantities   and   in the form 
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. (4.22) 

Let us now assume an equation of state 

           (4.23a) 

Therefore, on the above approximations and the assumption (4.23a) with 

(4.20) the two differential equations (4.22) depend on one another in contrast to 

the general case (4.15). In the following, we use an equation of state 

          ,       (4.23b) 

with a suitable constant  . Then, the two differential equations (4.22) have a 

unique solution for    which will not be given. By virtue of (4.23b)    can be 

calculated and we get   and   by (4.21). It seems more natural to assume an 

equation of state for   as function of   instead of    as function of     Hence, we 

see that a rigid body can be approximated on some assumptions but it does not 

really exist. With the approximation of the form (4.17) for the pressure    and    

we can calculate the pressure    and the density    of the non-rotating neutron 

star and the corresponding approximated values    and   which follow from the 

above equation. Substituting all the expressions into the field equations (4.14) 

we get to the lowest order three ordinary differential equations for the functions 

  
 
   ,       and       describing the non-rotating neutron star. In addition, by 

linearization of the equations (4.14) we get six linear partial differential 

equations for the approximated functions                   and    depending 

on   and  . It is worth mentioning that the equations describing the non-rotating 

neutron star are different from those of sub-chapter 2.10 by virtue of the 

different equation of state. 

Numerical methods are used for the solution of the problem where angular 

velocities             
 

   
 are considered fulfilling the assumption (4.19) and 

being observed (see         ). We will give some of these results in the 

following table where in the column with     the results for the non-rotating 

star are stated. Here,   and   denote the semi-major and semi-minor axes of the 

flattened rotating body (pulsar) where     gives the neutron star. 
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Table 

            

      

            

      
     

  

   
b    

  

      

0.895 0.0850 1.30 14.4 14.4 0 

0.895 0.0850 1.31 14.4 14.4 570 

0.895 0.0850 1.33 14.4 14.3 1000 

0.898 0.0852 1.35 14.6 14.0 2000 

0.904 0.0855 1.38 14.6 13.8 3000 

0.916 0.0862 1.42 14.91 13.3 4030 

1.53 0.317 1.98 14.6 14.6 0 

1.54 0.138 2.06 14.8 14.2 1000 

2.01 0.547 2.09 14.0 14.0 0 

2.03 0.550 2.17 14.2 13.6 1000 

The table shows that greater angular velocities and greater densities with 

greater pressure give greater deviations of the mass and semi-axes. For too 

small angular velocities and densities there are negligible deviations of mass 

and of semi-axes from those of non-rotating neutron stars. 

Furthermore, it follows by comparison with the results of sub-chapter 2.10 

that an equation of state of the form (2.13) gives a greater mass than an equation 

of state (4.23a) with (4.21). 

More details of the approximations and the numerical computations of 

rotating stars can be found in the work of         . 

Results about neutron stars based on the theory of general relativity are given 

by          and can also be found in          containing further references. 
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In this chapter post-Newtonian approximation of the gravitational field in flat 

space-time of a perfect fluid is studied. The conservation laws of energy-

momentum and of angular-momentum are derived. The equivalence of the 

conservation law of energy-momentum and of the equations of motion is shown 

to the studied accuracy. All the results of post-Newtonian approximation in flat 

space-time theory of gravitation agree up to the studied accuracy with those of 

general relativity as studied by Will in his famous book of Will         . 

5.1  Post-Newtonian Approximation 

The study of post-Newtonian approximation of gravitation in flat space-time 

follows along the considerations of Will. In this sub-chapter we assume a matter 

tensor of the form 

      
 

  
  

  
 

   

      
 

         
   

  

   

  
      

 
   (5.1a) 

where   denotes the density of matter,   is the specific internal energy,   is the 

isotropic pressure and  
   

  
  is the four-velocity. Equation (5.1a) yields by the 

use of relation (1.8) 

      
    

  

  
 

   

     
 

            (5.1b) 

The post-Newtonian approximation is an expansion of the gravitational field 

in powers of 
 

 
. Subsequently, we use the pseudo-Euclidean geometry given by 

(1.4) and (1.5). Let us start with the Newtonian gravitational potential defined 

by 

          (5.2a) 

with the solution 

          
       

      
    . (5.2b) 

Sub-chapter 2.2 implies the approximate tensor 
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with the inverse tensor 
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Let   denote the velocity of the body, i.e. 

                 
   

  
 
   

  
 
   

  
  (5.4) 

And assume in analogy to Will 

  
 

 
 
 
 

 

    
 

 
  

 

       
 

    (5.5a) 

and 

  
    

     
         (5.5b) 

The post-Newtonian approximation of gravitation now requires the 

knowledge of     to   
 

   , of     to   
 

    and of     to   
 

    (i,j=1,2,3). 

Hence, we make the ansatz 
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 (5.6a) 

with 
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              . (5.6b) 

The inverse tensor of (5.6a) is 
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In addition, we have 

  
  

  
 

   

   
 

    (5.6d) 

It follows from (1.13) and (1.12) by the use of (5.4) and (5.6) 

   

  
   

 

    
 

 
 
 

 
 
 
  (5.7) 

We get from (5.1) with the aid of (5.6) and (5.7) 

     
               

                    

(5.8a) 

                      
 

   
 

     
 

 
 
 

 
 

 
  

 

 
       

               

                       
 

   
 

     
 

 
 
 

 
 

 
        (i=1, 2, 3; j=4)  

                       
 

   
 

     
 

 
 
 
        (i=j=4)  

to      and   
 

 
  respectively. Furthermore, we get to      

      
            

 

   
 

     
 

 
   (5.8b) 
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We have from (1.21a) and (1.9) by the use of (5.6) the mixed energy-

momentum tensor of the gravitational field to the same accuracy as that of 

matter 
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   . (5.9b) 

We now obtain from (1.24) with the aid of (5.6), (5.8), (5.9) and (5.2) by 

longer elementary calculations 

               (i=1,2,3) (5.10a) 

And 

     
 

   
 
     

  

      
   

                     
   

 
    (5.10b) 

Here, (5.10a) follows with i=1,2,3; j=4 (or i and j exchanged ) and equation 

(5.10b) with i=j=4. The equations (1.23) with i, j=1,2,3 are identically satisfied 

by virtue of (5.2).The solution of (5.10a) is given by 

       
     

      
       (i=1,2,3) (5.11) 

where            and correspondingly     To solve equation (5.10b) we use 

the identity 

      
 

   
 
     

  

      

and introduce in analogy to Chandrasekhar the super-potential 

                   (5.12a) 
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which satisfies 

       . (5.12b) 

Hence, the equation (5.10b) can be rewritten 

         
   

                      
   

 
 .  (5.13) 

Furthermore, let us put                
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and 

                  (5.14b) 

then, the equation (5.13) has the solution 

       
   

      . (5.15) 

Hence, the tensors       and       of (5.6a) and (5.6c) are known to the 

needed accuracy. Will           has shown that any metric theory of gravitation 

may be given by a suitable transformation in the so-called “standard form”. For 

the metric (5.6a) this transformation is given by  

       
 

   

  

  
,  

i.e. only by a time-transformation. But it will be shown that there is no necessity 

for such a transformation as already remarked by Chugreev         . 

5.2  Conservation Laws 

When we start instead of (5.6a) from the better approximation for i, j =1,2,3 

       
 

        
 

       

where          then the energy-momentum tensor (1.21a) can be calculated 

to the accuracy 
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      (i, j =1,2,3)  

(5.16)                                                 
 

 
    (i=1, 2, 3; j=4),  (i=4; j=1, 2, 3) 

         (i=j=4).  

Elementary calculations give 

     
   

 

    
  

   

  

    
 

   
  

   

  

    
 

  
 

   

   
 
   

   

   
    

(5.17a) 

                   
 

    
  

   

  

    
  

   

  

       
   

  
      (i, j=1,2,3) 

                
 

    
  

   

  

   
     (i=1, 2, 3; j=4)  

                
 

   

  

   

  

   
     (i=4; j=1, 2, 3)  

                
 

    
 

  

   
 
   

  

   
     (i=j=4)  

where 
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 

 (5.17b) 

Hence, the energy-momentum tensor      
  of (5.17) is given to the stated 

accuracy (5.16). It follows that the knowledge of     is not necessary. 

We will now calculate        to the same accuracy as stated by (5.16). It 

follows from (1.28), (5.4), (5.6) and (5.7) for the symmetric matter tensor 
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 (5.18) 
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We obtain from (5.17) by the use of (5.13), (5.2a) and (5.10a) 
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 (5.19a) 

to accuracy of   
 

    and 

 
 

        
    

 

 
 

  

  
 (5.19b) 

to accuracy of   
 

 
 . It follows from (5.18) and (5.6a) 
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 (5.20a) 

to accuracy   
 

    and 

 
 

 

    

   
       

 

 
 

  

  
 (5.20b) 

to accuracy   
 

 
 . Hence, we get by comparing (5.19) and (5.20) 

 
 

        
   

 

 

    

            (j=1-4) (5.21) 

to accuracy   
 

    for j=1,2,3 and to   
 

 
  for j=4. The equations of motion 

(1.29a) to the above noted accuracy are equivalent to the conservation law of 

energy-momentum (see (1.25a)) 

 
 

         
       

       (j=1-4). (5.22) 

Put   

            
       

        (j=1-4). (5.23) 

Hence,    is constant to accuracy   
 

 
  for j=1,2,3 and to accuracy      for 

j=4. It follows from (5.23) with the aid of (5.8a), (5.9a), (5.2a) and (5.12b) by 

the theorem of Gauß 
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          (5.24a) 

for j=1,2.3 and 

             
 

   
 

      
 

 
 
 
     (5.24b) 

where the identity  

 
  

   
 
   

  

           
 

     
  

    
 
     

is used. Will          introduces for j=1,2,3 

      
                     

       
     (5.25a) 

then (compare also Chandrasekhar         ) 

 
   

            . (5.25b) 

We get from the conservation law for mass 

   
  

  
 

   

 
   

  
 

  
   (5.26) 

by the use of (5.4), (5.6d) and (5.7) the conservation law  

 
   

  
  

 

   
 
            (5.27a) 

to   
 

    where  

        
 

    
 

 
 
 

 
 
 
 . (5.27b) 

Hence, the conserved mass is given by 

          . (5.28) 

The conserved energy-momentum follows from (5.24) with (5.27b) and by 

(5.25) 
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                 (5.29a) 

(j=1,2,3) 

             
 

   
 

     
 

 
 
 

 
 
 
    . (5.29b) 

By the use of the identity (see e.g.         ) 

                 

the momentum (5.29a) is rewritten to   
 

 
  in the form 

              
 

   
 

     
 

 
 
 

 
 
 

 
 

 
  

 

           (5.29c) 

The conserved quantities of mass (5.28) and of the energy-momentum (5.29b) 

and (5.29c) are identical with the corresponding results of Einstein’s theory (see 
         or          ).  

It is worth mentioning that we have used the energy-momentum tensor in the 

form (5.1a) with the factor  
  

  
 

   

 to get formally the same results as those of 

general relativity. In general the above factor is omitted which would give the 

same results in another form of representation. 

We will now study the conservation law of angular-momentum (1.53) in 

uniformly moving reference frames. We get 

                               (5.30) 

is conserved for i, j=1,2,3,4. It follows by the use of (5.6) that        to an 

accuracy of   
 

 
  for i, j=1,2,3 and to an accuracy of      for i=4; j=1,2,3 and 

i=1,2,3; j=4. 

Hence, we obtain to the given accuracy the usual conservation law of 

angular-momentum, i.e. without spin expression: 

                         . (5.31) 

In particular, for j=4 we get with (5.23) 
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         . (5.32) 

If we substitute (5.8a) and (5.17a) into relation (5.32) we get for i=1,2,3 by 

elementary calculations 

                
 

   
 

     
 

 
 
 

 
 
 
         . (5.33) 

Defining the centre of the mass            (see Will         ) by  

           
 

   
 

     
 

 
 
 

 
 
 
          

 

   
 

     
 

 
 
 

 
 
 
     . 

We get from equation (5.33) by differentiation and the use of (5.29b) 

 
 

  
      

  

  
  (i=1,2,3) (5.34) 

i.e. the centre of the mass moves uniformly with the velocity  
 

  
          . 

5.3  Equations of Motion 

The equations of motion (1.29a) can be rewritten (see Petry         ) 

 
 

                  
 

      . (5.35) 

Elementary calculations give by the use of (5.6), (5.15) and (5.25b) for i, j, 

k=1,2,3 the Christoffel symbols 
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 (5.36) 
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The equations of motion are satisfied to accuracy   
 

    for j=1,2,3 and to 

accuracy   
 

 
  for j=4 (see (5.21)). Hence, it follows from formula (5.35) with 

j=4 that       
    (i, j=1,2,3) to the needed accuracy. Therefore, the 

Christoffel symbols (5.36) with       
    are identical with those of general 

relativity (see          and         ). The equations of motion (5.35) are by the 

use of (5.18) and (5.36) given to accuracy   
 

    for j=1,2,3 and to accuracy 

  
 

 
  for j=4. Here, the density    given by (5.27b) may be introduced instead 

of the density . 

Let         denote the symmetric matter tensor of the theory of Einstein then 

we have the relation 

         
  

  
 

   

       . (5.37) 

The equations of motion of general relativity of Einstein can be written (see 

e.g. Fock         ) 

 
 

           
   

                 
        

   
        (5.38) 

where        
  are the Christoffel symbols of the theory of Einstein and      is 

the determinant of the corresponding metric. By virtue of (5.37),     , 

       to   
 

    and the agreement of       
  with        

  to the needed 

accuracy the equations of motion (5.35) of gravitation in flat space-time agree 

with the equations of motion (5.38) of general relativity. Hence, the equations 

of motion are to post-Newtonian approximation identical with the results of the 

theory of Einstein. 

Summarizing, all the results of flat space-time theory of gravitation and the 

general theory of relativity of Einstein agree to post-Newtonian approximation. 

The results of this chapter on post-Newtonian approximations by the use of 

the theory of gravitation in flat space-time can be found in the article of Petry 

        . Post-Newtonian approximations to higher order (to  
 

 
) are given in the 

paper of Thümmel          by the use of the theory of gravitation in flat space-

time. 
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In this chapter spherically symmetric stars with their gravitational fields are 

studied to post-Newtonian approximation. The equations of motion of the star 

and the energy-momentum tensor are given. All these results agree with the 

corresponding results of general relativity to 1-post-Newtonian accuracy 

whereas to 2-post-Newtonian approximation the results are different from one 

another. In particular, the theorem of Birkhoff is not valid. Hence, the theory of 

gravitation in flat space-time and the general theory of relativity are different to 

this accuracy.  

6.1  Post-Newtonian Approximation of Non-Stationary 

Stars  

The equations describing a non-stationary spherically symmetric star 

depending on the distance from the centre   of the star and the time    are given 

in chapter III. The field equations are stated in formula (3.12) with   

    
 

    where   denotes the specific internal energy. The equations of 

motion are stated by (3.13) and the conservation of the whole energy-

momentum is given by (3.14). Furthermore, we have an equation of state 

(3.15).It is worth to mention that the equations of field (3.12) together with the 

equations of motion (3.13) imply the equations of the whole energy-momentum 

(3.14). Hence, the relations (3.14) can be omitted. The conservation law of mass 

(1.29b) has the form 

 
 

      
 

 

  
            

 

    
               (6.1) 

where    is given by (3.6). Hence, we have eight functions               and 

   depending on   and    and eight independent equations: (3.12) (four 

equations), (3.13) (two equations), (6.1) (one equation) and (3.15) (one 

equation).  

A suitable combination of the equations of motion (3.13) yields 
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 (6.2) 
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Hence, we replace equation (3.13b) by the simpler equation (6.2). In the 

following we introduce the radial velocity         instead of    and    given by 

     
   

  
   

 

  
 

 
 
 

 
 
  

   

,      
   

  
    

 

  
 

 
 
 

 
 
  

   

. (6.3) 

The post-Newtonian approximation assumes 
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 (6.4) 

We make the following ansatz for the post-Newtonian approximation  
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 (6.5) 

Here, the functions    (i=1,2,3),   (i=1,2,3) are of order      and depend on 

  and   . 

The boundary conditions must converge to zero as   goes to infinity. It holds 

        
 

  

   

   
   

 

    (6.6a) 

and 

     
 

     
 

       
   

   
    

 

   . (6.6b) 

The post-Newtonian approximation implies 

          (6.7) 

Hence, we get from the field equations (3.12) to   
 

    that 

            (6.8) 

which satisfies the differential equation 
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       . (6.9a) 

The third field equation gives to   
 

    

 
 

  

 

  
            

  
   

   

    
         

   

 
      (6.9b) 

where 
   

    
 must be calculated to     . The last field equation implies to    

 

    

 

  

 

  
       

     
 

  

   

  
       . 

This equation can be integrated by the use of the boundary conditions 

implying 

 
 

  

 

  
      

  
           

 

  
. (6.9c) 

The differential equations (6.9) must be solved by the use of the boundary 

conditions. 

The solutions of (6.9a) and (6.9c) are 

       
 

 
    

 
                     

 

 
 , (6.10a) 

     
    

 
 
 

 
        

 

 

 

 
        

 

 

 

        
 

 
 . (6.10b) 

Equation (6.1) gives by the use of (6.3), (6.5) and (6.6a) to      

  

   
 

 

  

 

  
           

Differentiation of equation (6.9a) gives by the use of this relation 

 

  

 

  
    

  
 

  

   
       

  

   
    

 

  

 

  
      .  

Elementary integration yields to      

 
  

   
         

 

 
. (6.11) 

Equation (6.9c) gives by differentiation and the use of (6.11) 

 

  

 

  
    

  
 

   

   
       

 

   
       

   

    
 

 
.  



A Theory of Gravitation in Flat Space-Time 
 

92  http://www.sciencepublishinggroup.com 

Therefore, equation (6.9b) can be rewritten in the form 

 
 

  

 

  
    

  
        

 

 

   

   
            

   

 
      (6.12) 

Let us now introduce the potentials in analogy to (5.14) 
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 (6.13) 

The differential equation (6.12) has the solution 

        
 

 

   

   
              . (6.10c) 

The relations (6.10) give together with (6.5), (6.6), (6.7) and (6.8) the post-

Newtonian approximation. 

The energy-momentum tensor of matter (3.7) can now be given to accuracy 
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 (6.14a) 

and the corresponding tensor of the gravitational field  
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 (6.14b) 

The expressions of these tensors to post-Newtonian approximation are 

omitted but they can be found in the article          . 
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We will now give the equations of motion to post-Newtonian accuracy of 

  
 

   . We use the differential equations (3.13) with matter the tensor (3.7), the 

differential equation (6.2) and the conservation law of mass (6.1). The post-

Newtonian approximations (6.5) with (6.6), (6.7) and (6.8) are used. 

Furthermore, the representations (6.10) are introduced. After longer calculations 

the following post-Newtonian approximations to   
 

    are received: 
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(6.15c) 

  
  

  
   

 

   
   

 
       

            
   

    
 

 

 

 
      

   

 
    

 
              

               
   

  

 

            
   

 
    

 
          

 

 
    

            
 

  

 

  

      

  
 

   

 
 

   

 

 

  
 

   

 
   

 

  
 

   

 
    

            
    

    
 

              
 

 

 

 
 .  

In the equation (6.15c) we have to eliminate   by relation (6.10a). Then, the 

equations (6.15) are three integro-differential equations to post-Newtonian 

approximation   
 

    for the three unknown functions     and  . Let us assume 

an equation of state 

 
 

 
          (6.16) 
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with a suitable function  . The boundary       of the star follows from (6.15b) 

with        : 

 

   
               

        

   
  

        

  
                     .  

Therefore, we have that  

                             (6.17) 

if for a fixed time     the relation                  holds. Then, relation (6.17) 

defines the boundary of the non-stationary star to post-Newtonian accuracy. The 

equation (6.17) is independent of the equation of state (6.16) but (6.16) is in 

agreement with (6.17). 

The detailed longer derivations of the equations (6.15) are given in          . 

We will now study the potentials in the exterior of the star, i.e.        . It 

follows from relation (6.5) with (6.6), (6.7), (6.8) and (6.10)  
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                (6.18b) 

with 

  
   

 
      

 

 
  

   

   
 

    

 

 

 
    

 

     

   
    

           
   

 
    

 
         

   

 
   .  

It holds (see            that the gravitational mass to   
 

    is 

          

 
    

 

     
 

 
         (6.19a) 

Hence, relation (6.18a) gives to   
 

    

        
   

   
 (6.19b) 

Relation (6.18b) can be rewritten by the use of (6.19a) to   
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 . 

In the article           it is shown that the last expression vanishes. Therefore, 

we get to   
 

    

      
   

   
   

   

   
 

 
. (6.19c) 

The relations (6.19) show that in the exterior of the star the theorem of 

Birkhoff holds to post-Newtonian accuracy. 

6.2  2-Post-Newtonian Approximation of a Non-Stationary 

Star 

We will in this sub-chapter only give some results of 2-post-Newtonian 

approximation. The study is given in           where the results are derived. 

We make the ansatz 

 
1 22 4 2 4

2

(4) 3 5 4 62 4 6 3 5

2 1 2 1
1 , 1 ,

2 1 1 1 1
1 ,

f U S g U S
c c c c

F h U S S F ct S S
c c c c c

     

      

 (6.20) 

where   ,   ,    and    are of order      and  ,    and    are already given in 

chapter 6.1.  

For 2-post-Newtonian the time-derivatives must be considered to higher 

approximations, i.e. let         be any function then the following approximation 

is used 

 
  

   
  

  

   
 

 
 

 

   
  

   
 

 
 

 

   
  

   
 

 
 (6.21) 

where  
  

   
 

  
is the Newtonian approximation,  

  

   
 

 
       and  

  

   
 

 
 

      are the 1-post-Newtonian and the 2-post-Newtonian approximations. We 

get from (6.20) up to 2-post-Newtonianaccuracy 

      
  

    
   

 

   
   

   
 

 
 

 

    
   

   
 

 
  

   

   
 

 
  (6.22a) 
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 (6.22b) 

In analogy to chapter 6.1 the expressions (6.20) and (6.22) are substituted 

into the differential equations (3.12). We get by elementary longer calculations 

differential equations for the 2-post-Newtonian approximations   ,   ,    and    

whereas the functions  ,    and    are given by (6.10). The solutions of these 

equations are given as functions of  ,  ,   and    It is worth to mention that    

implies divergent integrals by the standard 2-post Newtonian approximation. 

Hence, it is necessary to use retarded functions. Therefore, the expression of the 

energy tensor contains retardations implying gravitational waves of the order 

  
 

   . This is a well-known fact of higher order post-Newtonian 

approximations also by the use of general relativity theory. This may be the 

reason why higher order post-Newtonian approximations are not possible 

implying divergent integrals. Furthermore, the expressions for   , 
   

  
 and 

   

   
 

are not of order     . Therefore, they do not fulfil the condition on 2-post-

Newtonian approximation. The whole energy-momentum tensors of matter and 

of gravitational field can be given. The equations of motion and the 

conservation of mass are also stated where the gravitational mass    can be 

given to accuracy   
 

      We will now state the solution of the non-stationary 

star in the exterior, i.e.        .  

It follows 

     
   

   
   

   

   
 

 
  

(6.23) 

        
 

   
  

  

      

          

 

 

 
      

 

  

   

          
 

 
 ,  
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.  

The derivations of all the mentioned results of chapter 6.2 are longer 

calculations and they are not trivial. Therefore, only the exterior potentials (6.23) 

of the star are stated. It immediately follows from (6.23) that Birkhoff’s theorem 

is not valid by the use of 2-post-Newtonian approximation. This is in contrast to 

the theory of Einstein. Hence, flat space-time theory of gravitation and the 

general relativity theory of gravitation give different results to higher order 

approximations. 

The equations (6.23) give for a static spherically symmetric star up to 2-post-

Newtonian approximation 
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 

   
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   



 

 

 

 (6.24) 

It follows by comparing the two solutions (6.14) and (2.39) that the constant 

  of (2.39) is of order       with 

   
 

  

      

   
         

 

 

 
      . (6.25) 
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It is worth mentioning that the factors of the expressions  
 

 
 

 

 in the formulae 

(2.39a) and (2.39b) are of order      and the factor of the expression  
 

 
 

 

in 

(2.39c) is of orderof          .But by virtue of (6.25) in the formulae (6.24) 

these factors are too great and do not satisfy 2-post-Newtonian approximation. 

Therefore, the exterior solution of a static spherically symmetric star is 

approximately given by 
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         

     

 (6.26) 

where        is stated by formula (6.25). Estimates of   fulfil the condition 

    

which is in agreement of (2.39) with (6.26). 

All these results with detailed calculations are given in the article          . 

6.3  Non-Stationary Star and the Trajectory of a 

Circulating Body 

In this sub-chapter a simple model of a non-stationary star is given. The 

solution contains small time-dependent exterior gravitational effects. The 

perturbed equations of motion of a test body moving around the non-stationary 

star are given. The test body moves away from the centre of the star during the 

epoch of collapsing star and it moves towards the centre during the epoch of 

expanding star. 

The equations of a non-stationary spherically symmetric homogeneous star to 

Newtonian accuracy as special case of chapter 6.1 (see          ) are: 

 
  

  
   

  

  
 

 

 

    

  
 

   

      

 
   , (6.28a) 

 
  

  
  

 

  

 

  
       (6.28b) 
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     . (6.28c) 

The equation of state for a non-relativistic degenerate Fermi gas is 

 
   

 
 

 

 
 . (6.29) 

Furthermore, it is assumed that the star is homogeneous, i.e.  

        . (6.30) 

We use the ansatz 

        
 

  
     , (6.31a) 

        
        

  
       (6.31b) 

where      denotes the radius of the starand    is a fixed arbitrary constant. The 

gravitational mass to Newtonian accuracy is 

             

 
     

  

 
    . (6.32) 

It follows by the use of (6.29) to (6.32) 

    
  

    

     

  
, (6.33) 

        
  

    
 

 
 (6.34) 

where   is a constant of integration. Furthermore, the following differential 

equation           is received 

 
      

    
 

 
     

  

      
   

     
. (6.35) 

This differential equation can be integrated yielding 

  
  

  
 

 
   

 

 
    

  

 
 

 
  

   

 
 (6.36) 

where   is an constant of integration. Knowing a solution      of (6.36) the 

relations for   ,    and    are obtained by (6.33), (6.34) and (6.32).  

There are two different kinds of solutions: 
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(1)    : The radius      contracts to a positive minimum and then it 

expands for all times. 

(2)      The radius      of the star oscillates between a mimimum radius 

   and a maximum radius   . They are given by 
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       

  
       

 (6.37) 

The relations (6.37) give 

 
 

 
        

   

   
. (6.38) 

Equation (6.38) fixes     by the mass and the maximum and minimum radius 

of the star. 

The approximate solution of (6.36) has the form 

      
 

 
        

 

 
                

   

            
   . (6.39) 

Hence, the solution (6.39) describes to Newtonian accuracy a non-singular 

spherically symmetric, homogeneous, pulsating star. 

The period of the oscillation is  

         
      (6.40a) 

where 

    
 

 
        (6.40b) 

is the mean radius of the oscillating object. Formula gives for the Sun with 

                       ,              ,                   

the period of oscillation 

                          . (6.41) 
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This result is in good agreement with the experimentally measured value of 

1        . 

The special case       implies by the use of (6.7) the relation 

     
 

 
 

 
     

    .  

Then, we get with              by the use of (6.38) 

    
   

  
.  

Hence, the acceleration (6.35) and the velocity (6.36) at         are zero, i.e., 

we have a stationary star with radius   . This result also follows by the use of 

(6.39). The last two relations give 

   

  
 

 

 
    

  

  
 

 
.  

Relation (6.34) implies for         

   
 

 

   

  
 

  

  
 

 
.  

At the centre of the star we get  

   
  

  
 

 

   
 

 

   

  
.  

Hence, we have at the centre of the star by the use of (6.29) 

 

 
 

 

 

   

    
.  

Therefore, we receive a non-singular, spherically symmetric, stationary star 

where the pressure is given by the above relation. 

We will now give the exterior gravitational field of a spherically, non-

stationary star to 2-post-Newtonian approximation. The potentials in spherical 

coordinates are given by (3.4b). We get by (6.23) up to   
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 (6.41a) 

Elementary calculations yield by the use of (6.30), (6.31), (6.33), (6.34), 

(6.32) and (6.36) the approximate value 

    
 

  

  

  
   

   

    
   

     

  
. (6.41b) 

We will now give the motion of a test particle in this gravitational field. The 

differential equations (2.53) imply by the use of (6.41) for the perturbed orbit 

      around a circle with radius    after some longer calculations (see 
         ) the equations 

 
    

     
   

  
    

 

  

   

  

   

  
. (6.42) 

This differential equation can be solved by standard methods. We get by 

suitable initial conditions and elementary longer calculations the perturbed 

radius  

        
  

 
 

   

    
 

 
          (6.43a) 

and the perturbed radial velocity 

 
 

  
    

  

 
 

   

    
 

      

     
 

    

     
 

   

    
      

      
   . (6.43b) 

The derivation of the perturbed solution is given in           where a factor 

in the denominator is missing. 

Hence, the deviations of the orbit and its velocity from a circle are very small. 

But this result although very small differs from the corresponding results of 

general relativity where by the theorem of Birkhoff no change of the orbit arises. 
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All these results are contained in the articles           and          . 

6.4  Gravitational Radiation from a Binary System 

In this sub-chapter 1-post-Newtonian approximations are used to derive the 

gravitational radiation of a system of objects at large distances from one another. 

A more explicit formula is given for a binary system. It agrees with the result of 

general relativity. 

We use the 1-post-Newtonian approximation of the potentials (5.8) and the 

tensor of matter 
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 (6.44) 

Here, the potentials   and    are stated by (5.2b) and (5.11). Subsequently, 

we use the tensors (1.32), the field equations (1.34) and the tensors of the 

gravitational energy (1.35) and of matter (1.37). It follows from (1.34) by 

multiplication with     

        
  

 
  

          
     

  
        

 
 (6.45) 

Put 

             (6.46) 

then we get 

        
  

     (6.47a)  

with 
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. (6.47b) 

In the following we use the pseudo-Euclidean geometry (1.1) and (1.5). Then, 

the differential equation (6.47) has the familiar form of a wave equation. The 

solution for out-going waves is  

      
 

  
          

      

 
            (6.48) 

where the integration is taken over the whole space   . 

Longer calculations are given in the article of Petry          . They follow 

along the lines of the papers         ,          and          in studying 

gravitational radiation by the use of general relativity. The resulting radiation 

energy   per unit time is given to   
 

    by 

 
  

  
  

 

      
 

  
 

     

     
 

  
 

     

       
 

  
 

     

      

 

  (6.49) 

where,     are the quadrupole moments. 

It holds for several point masses   with velocities       
    

    
  : 

  
     

              
   

 
 

   
 

  
  

 
   

    
 

  
 . (6.50) 

The application of (6.49) and (6.50) to a binary system gives the gravitational 

radiation 

 
  

  
  

 

  

      

               
  

  
 

 
  (6.51) 

with the following abbreviations for the two objects   and : 

        ,    
    

 
,           ,       . (6.52) 

This result is identical with that of the general relativity theory of Einstein to 

this accuracy (see          and         . Therefore, the results of both theories 

agree in the magnitude of the gravitational energy emitted by the binary pulsar 

system PSR 1913+16 (see Taylor         ). 
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All these results can be found for flat space-time theory of gravitation in 
          and for the theory of general relativity in the papers         , 

         and         . 
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In this chapter homogeneous, isotropic cosmological models are studied. The 

differential equations which describe these models together with the solutions 

are stated. Flat space-time theory of gravitation implies non-singular 

cosmological solutions, i.e. a big bang does not exist. This chapter follows 

along the lines of the articles           and          . 

7.1  Homogeneous Isotropic Cosmological Models with 

Cosmological Constant 

In this chapter homogeneous isotropic cosmological models are studied. The 

field equations are given and the solutions are derived. There is no big bang.  

We tart from the flat space-time theory of gravitation stated in chapter I. We 

use the flat space-time metric (1.1) with the pseudo-Euclidean geometry (1.5). 

The tensors of matter      
 , of radiation      

  and of the cosmological 

constant      
  are given by (1.28) with 

       (dust) (7.1a)  

with 

   
 

 
    (radiation) (7.1b) 

and by (1.21b) with (1.10). The energy-momentum tensor of gravitation is 

stated by relation (1.21a). 

In the following, it is assumed that the universe is homogeneous and isotropic 

and matter is described in the rest frame i.e.   

        (i=1,2,3). (7.2) 

Then, the potentials are described by two time-dependent functions      and 

     with 

 

2 ( ),( 1,2,3)

1 ( ),( 4)

0.( )

ijg a t i j

h t i j

i j

  

   

 

 (7.3) 

Then, the differential equations (1.24) with (1.23) yield 
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  (7.4a) 

      
  

 
 

 

      
 

 
      

 

    

  

  
 

 

        (7.4b) 

where 

    
 

          
  

 
 

 
  

  

 
 

 
 

 

 
   

  

 
 

  

 
 

 

  (7.4c) 

Here,    and    are the densities of matter and radiation, where the relations 

(7.1) are used and the prime denotes the t-derivative. It follows from (1.12) by 

the use of relation (7.2) 

       
   

  
             . (7.5) 

The proper-time is given by (1.8) implying 

                                  
 

 
      . (7.6) 

The tensor of matter plus radiation has the form 
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 (7.7a) 

and the tensor of gravitation is 

     
     

 

   
        (i=j=1, 2, 3)  

(7.7b)     
 

   
       (i=j=4)  

                                            .               (i j)  

The conservation law of the whole energy-momentum (1.25a) yields with i=4 

by the use of (1.23c) 

         
  

 

   
   

 

  

  

  
     (7.8) 
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where   is a constant of integration. It follows from the equations of motion 

(1.26)  

 
 

  
          

  

 
   

 

 

  

 
       . (7.9) 

Let us assume that matter and radiation are decoupled then (7.9) gives with 

the initial conditions at present time      

               (7.10) 

the solutions 

          ,                (7.11) 

where     and     are the densities at present time     .  

The initial conditions for the differential equations (7.4) are (see (7.10)) 

              , a        ,            (7.12) 

where      is the Hubble constant and     is a further constant which does not 

arise by the use of the theory of general relativity. 

Put 

          
 

 

   

  
  (7.13) 

Then, it follows from (7.4) and (7.5) by the use of the initial conditions (7.12) 

 
  

 
   

  

 
  

         

             
. (7.14a) 

Further integration with the initial conditions (7.12) yields 

                   . (7.14b) 

Relation (7.8) gives with      

 
 

 
         

     
 

 
           

   

   
    

  . (7.15) 

We define as usually the density parameters 

    
      

   
 ,    

      

   
 ,    

   

   
  (7.16) 
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and put 

                . (7.17) 

It follows from (7.8) by the use of (7.14), (7.17) and the elimination of   and 

   in (7.8) the differential equation 

  
  

 
 

 
 

  
 

                
          

            . (7.18) 

Relation (7.15) is rewritten by the use of (7.16) and (7.17): 

 
     

  
   

 

 

  

  
 

 
      . (7.19) 

It follows from (7.19) that 

      (7.20) 

is equivalent to 

                 (7.21) 

for all          . Hence, we have from (7.18) and (7.14b) that (7.20) is 

necessary and sufficient for the existence of non-singular cosmological models. 

Hence, the sum of the density parameters (7.17) is greater than one. 

Therefore, the solutions      of (7.18) and      given by (7.14b) describe a 

homogeneous, isotropic model of the universe.  

We get from (7.18) that 

           (7.22a) 

for all           where    is defined by  

     
      

      
        . (7.22b) 

We require 

     

to get small values for     .In the following, let us assume  

      . (7.23) 
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Under the condition (7.23) an analytic solution of (7.18) can be given. Were 

write the equation (7.18) with initial condition (7.10) in the form 

 
  

 
  

  

             
                    

,      . (7.24) 

The upper (lower) sign implies an increasing (decreasing) of the function 

    . Standard integration methods and some trigonometric addition theorems 

give after longer calculations for the upper sign the solution 

                                 
  

  
 

   

             (7.25a) 

where 

                            
 

 
      . (7.25b) 

The detailed derivation of the result (7.25) is found in the article of         . 

We will now calculate the time    where      reaches its minimal value 

  .This follows from 

        ,  

i.e., by the use of relation (7.18) 

                       
  

  
 

   

              . (7.26) 

We get by elementary considerations 

         
 

 

  

  
 

          

 
   (7.27a) 

with 

      
 

  
           

          

    
               . (7.27b) 

A small value of the function      in the early universe yields 

       . (7.28) 

To get a solution      which goes to infinity as t   the denominator of 

(7.25a) must go to zero. This implies 
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           (7.29) 

where expressions containing    are omitted by virtue of (7.28). 

We will now state a simple asymptotic formula for    . 

Define     by  

       
 

 

  

  
   

 

 

  

  
 

 
      ).  

It follows from (7.25) by longer elementary calculations the asymptotic 

representation (see e.g.          ) 

      
 

 
 

  

     
 

 

                            
 

 

       
 

  
    

                      
       

 

  

.  

Let us assume that    is as large such that the above asymptotic formulae 

hold and denote by    the corresponding proper time. Then, we get  

      
 

     

 

  
      

 

    

 

  
log 

     

      
 .  

This relation implies the asymptotic density of matter 

      
   

     
 

   

      
                  .  

Hence, we get an exponential decay of matter in analogy to the radio-active 

decay. 

The case       must be considered separately by virtue of (7.17) with (7.28) 

and will be studied in sub-chapter 7.2. 

The solution of (7.18) with (7.23) and the initial condition          can also 

be given. It holds 

          
    

  

  
  

         
  

  
  

                 (7.30a) 

for all          . Here, it holds 
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   (7.30b) 

The relations (7.30) yield as      

                       
   

         
. (7.31a) 

Hence, the function      starts at      from 1.81   , decreases to    and 

then increases to infinity as   goes to infinity. It follows from (7.14) by the use 

of (7.31a) as       

     
 

 

  

  
    

 
       . (7.31b) 

The function      starts from infinity at     , decreases to a positive value 

and then increases to infinity as   goes to infinity. 

Therefore, we have for all           

          . (7.32) 

Hence, we have non-singular cosmological models by virtue of (7.11). In the 

beginning of the universe there are no matter and no vacuum energy, which is 

given by the cosmological constant, i.e. all the energy is in form of gravitational 

energy. In the course of time matter and radiation arises at coasts of 

gravitational energy. After a certain time the energy of matter and of radiation 

decreases and again go to zero as in the beginning of the universe. Therefore, in 

contrast to general relativity there is no singularity, i.e. no big bang. 

The second law of thermodynamics is given by 

             (7.33) 

where         and   denote energy, pressure, volume, absolute temperature 

and entropy. 

The conservation of the whole energy (7.8) gives with 

        (7.34) 

with a suitable constant   the relation 

 
 

  
   . (7.35) 
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The comparison of (7.35) and (7.33) yields 

        . (7.36) 

The right hand side of equation (7.36) is by the third law of thermodynamics 

non-negative. For an expanding space it must hold       . Here,   is the 

pressure of the gravitational field and of the field implied by the cosmological 

constant. It follows by the use of the asymptotic formulae for    and    that 

this condition is at least fulfilled for sufficiently large times. In the beginning of 

the universe space is contracting by virtue of (7.24). Hence, for      it must 

hold      The pressure of the gravitational field dominates the other ones. We 

get by the use of (7.31): 

  
 

     
 

 

  

  
 

 
  

     

which contradicts the condition for     . These considerations also hold for 

the case of     because the cosmological constant is not important in the 

beginning of the universe. 

The application of equation (7.9) to the third law of thermodynamics requires 

a non-increasing function      to get entropy production in contradiction to the 

increasing of this function. Hence, we see that for the case     the universe is 

not expanding and not contracting and there is no entropy production. 

Cosmological models without singularities by the use of flat space-time 

theory of gravitation are already studied in the article          . 

7.2  Homogeneous Isotropic Cosmological Model without 

Cosmological Constant  

In this sub-chapter cosmological models with     and without loss of 

generality with put     . We start with the previous section under the 

assumption     . We get byequation (7.22b) 

      
 . (7.37) 

It follows from (7.25) as     by longer elementary calculations and the 

use of (7.28) and (7.13) 

 
   

  
  

 

 
    . (7.38) 
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Again the considerations of (7.33) to (7.36) hold implying a non-expanding 

universe. But we may also start from the relation (7.9) by multiplication with a 

constant  . It follows 

     
   

       
    

 

 
        

  

 
  . (7.39) 

By the use of the black body temperature 

              (7.40) 

relation (7.39) has again the form of the second law of thermodynamics (7.33) 

with 

          ,       ,         
 

  
 

 
,  

(7.41) 

    
 

 
        

     

  

  

 
  .  

Relation (7.41) implies by the use of the second law of thermodynamics that 

     must decrease for all           to give entropy production. This is at 

present time  stated by (7.38). Hence, in the case     the interpretation of a 

contracting and then expanding universe is possible. The time    is again 

calculated as before by          of the solution (7.25). It follows by longer 

calculations and condition (7.28): 

       
 

 
   

 

 

    

         
 . (7.42a) 

We get by the use of (7.14b) with (7.19) and (7.37)  

          
 

 
                     . (7.42b) 

Therefore, the creation of matter given by (7.11) from the minimal value of 

     at    till the present time      is given by a factor of about 1.4. It follows 

from (7.17) 

                   (7.43) 

The density parameter of matter    is a little bit greater than one. 

The epoch before    , i.e.           can be received by the results of 

chapter 7.1. 
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All these results are contained in the articles of Petry           and          . 

We will now give an asymptotic solution as    . Put 

          
 

 

  

  
   (7.44a) 

and assume that 

          . (7.44b) 

Then, the differential equation (7.18) with       has the form 

   

 
              

 

 

  

  
            

 

 . (7.45a) 

The solution is given by  

       
 

 

 

  
 

 

 

  

  
 

 
           

 . (7.45b) 

The study of      for     given by (7.25) and the use of (7.13) and (7.28) 

imply 

         
 

 
   

     

  
      

 

 
  . (7.46) 

Hence, the function      is in the above stated region nearly constant and 

converges to a positive value which is a little bit smaller than one. Therefore, 

the function      starts from a finite positive value       and      from infinity. 

In the course of time      decreases till to the time    with a value          

 . After that time      always increases to infinity. The function      decreases 

for all times to a positive value which is a little bit smaller than the present 

value in agreement with the third law of thermodynamics stated by relation 

(7.9). Hence, in the case that the cosmological constant is zero the interpretation 

of an expanding space is permitted but also the interpretation of a non-

expanding space is possible by the considerations of sub-section 7.1. 

Furthermore, it appears that at present time the universe is nearly stationary. 

In the final state only matter and gravitational energy exist. 

It is worth mentioning that in addition to matter, radiation and cosmological 

constant a further kind of energy may be introduced in the study of 

cosmological models. Such considerations can be found in the articles           

and          . 
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A cosmological model with a scaling dependent cosmological constant is 

studied in the article         . 

Summarizing, the cosmological models of flat space-time theory of 

gravitation are in the beginning of the universe quite different from those of 

general relativity. In the beginning strong gravitational fields exist. The received 

models are non-singular, i.e. a big bang does not exist. Formula (7.45b) is 

identical with the result of general relativity, i.e. for sufficiently large times 

after the minimum of the universe the two theories give the same result.  
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8.1  Non-Expanding Universe 

In this sub-chapter we will study non-expanding universes. It is well-known 

that the observed redshift of distant objects (galaxies, quasars) are interpreted as 

Doppler-effect, i.e. the observed universe is expanding. Furthermore, 

astrophysical observations indicate an accelerated expansion in the recent epoch.  

In the previous chapter we have shown that an expanding universe can be 

received if the cosmological constant      This result can be used to explain 

the observed redshift of distant objects. If the cosmological constant     the 

third law of thermodynamics is violated. Hence, another form of the second law 

of Thermodynamics containing the whole energy of the universe is considered. 

This law implies that there are no expansion and no contraction of the universe 

and entropy is not produced in the course of time.  

It is worth to mention that this law is also applicable in the special case    . 

8.2  Proper Time and Absolute Time 

In addition to the system time   and the proper time   in the previous chapters 

we define the absolute time   . 

The proper time    for an object at rest is defined by 

     
 

     
    (8.1) 

This gives for the whole proper time since the beginning of the universe 

        
 

     

 

  
  . (8.2) 

The proper time is used in the study of general relativity. 

In the beginning of the universe we have  

            .  

This implies by the use of (7.14b) that 

         
 

       
 

     

  
       

 (8.3) 
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for     . Hence, relation (8.2) implies the proper time       at any time  . The 

equation (7.18) can be written by the use of (7.14b) 

  
 

 

  

   
 

 
   

   
    

   
  

   
  

      . (8.4) 

The differential equation (8.4) is for      identical with the equation given 

by general relativity. The case      implies the singularity, i.e., the big bang 

by Einstein’s theory. But    must be greater than zero and must fulfil the 

condition (7.28) which avoids the singularity. Hence, relation (8.4) implies that 

for     not too small that the result of flat space-time theory of gravitation 

agrees with that of general relativity, i.e. shortly after the big bang of Einstein’s 

theory. 

We will now introduce the absolute time    by 

     
 

         
   

 

    
   . (8.5) 

This gives for the proper   in the universe 

                             . (8.6) 

Relation (8.6) implies for the absolute value of the light-velocity   : 

       
  

   
   . (8.7) 

Therefore, the absolute value of the light velocity in the universe is always 

the vacuum light velocity    This is the reason that    is denoted as absolute time. 

In the further study we will remark that the time    has advantages relative to the 

use of the proper time    although the proper time is measured by atomic clocks. 

The equation (8.4) can be written by the use of (8.5) in the form 

  
  

   
 

 
 

  
 

  
          

            . (8.8) 

Furthermore, assume that a light ray is emitted at distance   at time     resp. 

at time          and it is received by the observer at time      resp. at time 

     . Then, it holds by the use of (7.8)  

          
 

   
   ,                  

       
   

        
. 

These two relations give 
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        . 

This is a further reason that    is the absolute time. 

8.3  Redshift 

We will now calculate the frequency emitted from a distant object at rest and 

received by the observer at rest at present time. The use of the absolute time    
simplifies the calculation although the use of the system time t and of the proper 

time    would give the same result. 

Let us assume that an atom at rest in a distant object emits a photon at time 

   . The proper time is by virtue of (8.6): 

             . (8.9) 

The energy of the emitted photon is 

            
   

  
         . (8.10) 

The photon moves to the observer and it arrives at time      
    Let 

              be the four-momentum of the photon in the universe with  

           . 

Then, it follows from equation (1.30) with     by the use of (8.6) and (8.7) 

 
 

   
    

   

  
       

  

   
            , (8.11) 

i.e., the energy of the emitted photon is constant during its motion. It is worth to 

mention that the conservation of the energy of the photon during its motion to 

the observer only holds by the use of the absolute time   . Hence, we have by 

the law 

     

where here   denotes the Planck constant that the arriving photon has the 

frequency  

           . (8.12) 

Here,    is the frequency emitted by the same atom at rest and at present time. 

This gives the reshift  
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  . (8.13) 

This redshift formula is also received by the use of the proper time    and the 

system time    This results can be found in the article of Petry         . 

We will now give the distance-redshift relation. Equation (8.6) implies for 

light emitted at distance   at time     and received at     at time     by the 

use of (8.7) 

                   
   
   

. (8.14) 

Equation (8.8) yields by differentiation 

  
  

   
  

 

   
  

    
 

 
 

 

   

    
    

   
    

    
  

   
  

       
  

   
  

This relation gives at present time    : 

 
        

    
    

             
 

 
      . (8.15) 

The redshift (8.13) is approximated by Taylor expansion and the use of (8.14)    

    
 

 
    

 

 

 

  
 

        

    
     

 

 
 

 
.  

Hence, we get by (8.15) and (7.17) and neglecting small expressions the 

redshift: 

     
 

 
 

 

 
     

 

 
 

 
. (8.16) 

We easily get the redshift formula to higher order by the use of Taylor 

expansion to higher order. By virtue of the use of the absolute time    only 

differentiation to higher order of (8.8) are needed by virtue of (8.14). 

For an expanding universe the redshift follows by the transformation 

             (i=1,2,3) (8.17a) 

with the velocity 

 
 

   
   

      

   
    (i=1,2,3). (8.17b) 
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The proper time   of the universe with the coordinates            and the 

proper time    is given by: 

  (8.18) 

Relation (8.18) implies that locally, i.e.      (i=1,2,3) the velocity of light 

is equal to the vacuumlight velocity. This result is connected with the ideas of 

Einstein that locally the pseudo-Euclidean geometry holds. We get by the 

substitution of (8.17) into relation (8.18) 

      , 

i.e. any observer  in the expanding universe is given by (8.18) and has the 

proper-time   . The theory of gravitation in flat space-time doesn’t use (8.18) 

and it is therefore not further studied. 

We will mention that a universe which at first contracts and then expands has 

no singularity, i.e. there is no big bang. Instead of the big bang we have a 

universe with a bounce. 

In flat space-time theory of gravitation the redshift may be explained without 

expansion of space by the conservation of the whole energy (7.8) of the 

universe. It follows from (7.7) with (7.11) that the different kinds of matter, of 

radiation and of gravitation are transformed into one another in the course of 

time by the time-dependence of   and    This is in analogy to the result that the 

gravitational field influences the redshift(see (2.69)).  

There sults of this chapter can be found in several articles of Petry          
  98 ,  98 ,  02,  08,  11 ,  13  . 

8.4  Age of the Universe 

We will now calculate the age of the universe measured with absolute time  . 
It follows by the use of (8.8) for the age after the minimum of the function      

till the present time: 
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(8.19) 

                   
 

  
 

   

                         

 

  
  

                   
 

  
 

   

                       

 

  
  

       
 

  
                    

       
 

  
.  

Therefore, the age of the universe measured with absolute time is greater than 
 

  
 independent of the density parameters, i.e. there is no age-problem. It seems 

that the use of the absolute time instead of the proper time is more natural. This 

is implied by the fact that the time difference at a distant object stated by two 

different events is measured by the observer at present time with the same value 

of time difference and the velocity of light is everywhere and at any time equal 

to the vacuum light velocity. 

Summarizing: Flat space-time theory of gravitation gives cosmological 

models with bounce and without big bang. Furthermore, the models can be 

interpreted as non-expanding universe. The redshift is explained by the 

transformation of the different kindsof energy into one another in the course of 

time whereas the whole energy of the universe is conserved. This interpretation 

can also be found in the article of Petry         . It follows that the introduction 

of the absolute time    simplifies the computations. The expansion of space was 

at earlier times the only interpretation of the redshift. In the meantime there are 

many authors who negate the expansion and assume that the redshift is intrinsic.
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In this chapter the theory of linear perturbations in the universe are studied. 

9.1  Differential Equations of Linear Perturbation in the 

Universe 

A covariant, linear, cosmological perturbation theory is given. The metric is 

the pseudo-Euclidean geometry. The energy-momentum tensor is stated and the 

basic equations for the propagation of the perturbations are presented. The 

perturbed equations for a homogeneous isotropic universe are stated. All the 

results of this chapter can be found in          . 

We use the pseudo-Euclidean geometry (1.5), the theory of gravitation in flat 

space-time (1.23), the equations of motion (1.29) and the conservation of the 

whole energy-momentum (1.25). The matter tensor is given by (1.28). 

The gravitational field satisfies  

              (9.1a) 

with the condition 

             . (9.1b) 

It follows by linear perturbation 

              (9.2a) 

with the result 

                    (9.2b) 

In addition, we put 

                        . (9.3) 

The arising equations of perturbations are applied to cosmological models 

with 

21 ( ) ( 1,2,3)

( ) ( 4)
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as considered in chapter VII. 

Let               be the perturbed velocity. Put the perturbed potentials 

         ,    
 

 
                (i=1,2,3). (9.4) 

Then, the cosmological model implies after longer calculations the 

differential equations for the perturbed field 

(1)   
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   (i=1,2,3)  
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(9.5) 
  

 

 
 

 

   
 
    

 

  

  

 
     

      
 

        
  

 
 

  

 
 

  

  
 

 

         
  

 
 

  

 
 

  

  
  

                                     

The perturbed equations of motion are: 

(1) 
   

    
 

 

 

  
             

   

 
    

 

 
 

  

    
 

 
 

  

   
   (i=1,2,3)   

(2)           
    

   
 
    

   

  
  

 

 
 

  

  
 

 

 
 

  

  
  

  

 
   

 

 

  

 
      (9.6) 

Furthermore, we have an equation of state for the perturbed pressure. i.e., 
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         . (9.7) 

The relations (9.5), (9.6) and (9.7) are ten equations for the  ten unknown 

functions       (i=1,2,3),       (i=1,2,3),    and    These equations describe 

small perturbations in a homogeneous, isotropic cosmological model. 

In the following let us assume that the equation of state has the form 

      
    (9.8) 

with constant velocity sound         It follows as  consequence of the 

perturbed field equation (9.5) and the perturbed equations of motion (9.6) a 

conservation law of the perturbed energy-momentum tensor (see             

9.2  Spherically Symmetric Perturbations 

We will now study spherically symmetric solutions of the perturbed 

equations (9.5), (9.6) and (9.8). The study of these results are contained in the 

following sub-chapters and are found in the articles           and          . 

Let   denote the Euclidean distance from the centre of the spherical 

symmetry and let   be the wave number. We make the ansatz 

              
       

 
                 

       

 
   

(9.9)         
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We get by substituting the relations (9.9) into the equations (9.5) and (9.6) 
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   .       (9.11) 

The three perturbed field equations (9.10) and the two perturbed equations of 

motion (9.11) are five linear homogeneous differential equations for the five 

unknown functions                depending on   and on a parameter  . Knowing a 

solution of (9.10) and (9.11) for   on a fixed interval   we can get a more 

general solution by virtue of the linearity of the equations. Let      be a 

function of   on the interval   and let    be a fixed distance from the centre then 

we get the more general solutions  
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 (9.12) 

Here, the integration is taken over the interval    

In the following we will only consider cosmological models with    , i.e.  

      (9.13) 
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and the case  

   
     (9.14) 

We put 

   
   

   
. (9.15) 

9.3  Beginning of the Universe 

The beginning of the universe in flat space-time theory of gravitation is non-

singular. All the energy is in form of gravitational energy and radiation and dust 

arise out of gravitational energy whereas the whole energy is conserved. Put for 

     

    
 

 
       (9.16) 

Then, we have by (7.31) and (7.14b) 
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In the beginning of the universe the density of matter is negligible and only 

the density of radiation and its pressure dominate. 

We make the ansatz 

    
   

     
 
        

   

     
 
           

   

       
 
       

       
   

       
 
    

  

 
        

   

       
 
     (9.18) 

We get by the substitution of the relations (9.16), (9.17) and (9.18) into the 

equations (9.10) and (9.11) and by the use of (9.13), (9.14) and (9.15) five 

homogeneous linear equations to determine   such that not all of the five 

coefficients                vanish. There exist four non-negative values of  : 

            (9.19) 

In the following only the case     is studied implying two arbitrary 

constants    and   . We get 
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 (9.20a) 

Furthermore, it follows 
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 (9.20b) 

All the other coefficients can be recursively calculated. Hence, we get for 

    the solution (9.18) depending on two arbitrary parameters. Then, the 

relations (9.12) give the perturbed solutions in the beginning of the universe. 

Let us now discuss the received perturbed solution. Assuming        on the 

interval   we have to put      to get collapsing spherically symmetric 

perturbations in the neighbourhood of the centre as   increases from      This 

result follows by the use of (9.20a), (9.18) and (9.12). Furthermore, we get that 

the density of the spherically symmetric perturbation is positive if the wave 

numbers fulfil the condition 

      
  

 
  

      

  

 

     
. (9.21) 

Hence, we have to the lowest order of the density fluctuations as      

                   
       

 
  

  
  

     
   

 

  
 

   

   
      

 

     (9.22) 

Therefore, for the case     small spherically symmetric non-homogeneities 

in the uniform distribution of matter can exist in the beginning of the universe. 

The cases         give only one-parametric solutions with 
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for     . 

Therefore, small non-homogeneities can arise in the homogeneous 

distribution of matter in the beginning. By virtue of the small horizons there are 

many unconnected regions in the universe. The non-homogeneities are 

unconnected and arise independently from one another. Therefore, they are 

uniformly distributed in space in the beginning of the universe. This may 

explain the presently observed homogeneity of matter on large scales in the 

universe. The horizons increase in the course of time and larger regions of the 

universe become connected. The non-homogeneities are then connected and 

influence one another by gravitation. 

9.4  Matter Dominated Universe 

In this sub-chapter the universe is considered where matter dominates 

radiation. Put  

    
 

 
         

   
 (9.23) 

with 

       
 

 
. (9.24) 

During the studied time epoch it holds by (7.46) and (7.14b) 

       ,                                (9.25) 

We make the ansatz 

          
  

  
  

  
  

                
  

  
  

  
  

     

(9.26)            
 
    

  

  
  

  
    

  

   
        

  

  
  

  
 

 

   
  

  

 
         

 
    

  

  
  

  
   

It follows in analogy to the previous sub-chapter 

       (9.27) 
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which imply non-vanishing solutions. Furthermore, a pair of complex numbers 

is received to get non-vanishing solutions. The case  

     (9.28) 

is further studied. It follows with an arbitrary parameter   : 

     
  

 
  ,         ,      

  

  
  ,     

 

  
  . (9.29a) 

The coefficients of higher order can again be recursively calculated. It can be 

proved that the series (9.26) converge absolutely and uniformly. Hence, the 

sums and the integrals of (9.12) can be exchanged. Put          with    

sufficiently small, i.e. large scale non-homogeneities we have to the lowest 

order 

                   
             

       

 
  . (9.29b) 

This solution is non-singular for     whereas in           spherically 

symmetric perturbations are considered by the use of general relativity yielding 

a singularity at      Hence, the density contrast in the matter dominated 

universe increases faster than by the use of general relativity (see e.g.          
        ). In these articles it is proved that the density contrast increases at most 

linearly with the function     . 

Let    be the time of the decoupling of matter and radiation. Then, relation 

(9.29b) yields 

                               
    

     
 

   
. (9.30) 

It holds for adiabatic perturbations 

                           . (9.31) 

Here,    denotes the temperature anisotropy of CMBR. The decoupling 

occurs at a redshift    (see e.g.,        ) 

                    (9.32) 

The analysis of COBE-data show that the CMBR has an anisotropy of 

              (9.33) 
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on large scales           Hence, relation (9.30) gives by the use of (9.31), (9.32) 

and (9.33) 

                                  
   

. (9.34) 

The time    where the density contrast is given by  

                     

implies a redshift    with 

                    
 

    
   

      (9.35) 

Summarizing, large scale structures can arise in the matter dominated 

universe in accordance with the observed CMBR anisotropy. It is worth to 

mention that for a density contrast greater than one non-linear perturbations 

must be considered.  

All these results with detailed calculations are given in the articles of 
          and               where also further remarks can be found. 

Spherically symmetric perturbations in a universe which contains an 

additional field as source are studied in the article          . 

In the paper          higher order approximations of density perturbations 

are given as well in the beginning as in the matter dominated universe. The 

results are based on numerical computations. Numerical computations of 

spherically symmetric density perturbations in a universe with an additional 

field are stated in the paper         . 

For the study of the early universe and structure formation by the use of 

Einstein’s theory, e.g., the books of                   and          shall be 

considered. 

It should also be remarked that the theory of Einstein implies a too small 

density contrast which yields difficulties to explain the large scale structures in 

the universe as galaxies, etc. 
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In chapter V the post-Newtonian approximation neglecting the universe, i.e. 

in empty space is given. In this chapter post-Newtonian approximation in the 

universe is studied. Here, we follow along the lines of article         . 

10.1  Post-Newtonian Approximation 

The metric is the pseudo-Euclidean geometry given by equation (1.1) with 

(1.5). The potentials are: 
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 (10.1) 

The matter tensor is given by (5.1a) without the factor  
  

  
 

   

 in contrast to 

the considerations of chapter V. In the following, we follow along the lines of 

chapter V. Let us assume condition (5.5) and (5.6b). Again we get (5.6d). 

Relation (1.12) with (1.13) implies by the use of (10.1) 

 
  

  
   

 

    
 

          . (10.2) 

The matter tensor has to post-Newtonian accuracy the form 
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 (10.3) 

Now, we can receive       and   to post-Newtonian approximation in the 

homogeneous, isotropic universe similar to chapter 5.1. It follows 
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    . (10.4) 

Here, the integral is taken over the whole space and             etc. We 

introduce 

     
  

 
             . (10.5) 

We get 

         
   

      
     

 

 
 

  

  
   

      

      
    . (10.6) 

We introduce the potential 

                  

      
     

 

 

 

  

  

  
  (10.7a) 

where           denotes the scalar- product in   . It follows 

       
 

  
        

   

 
  

   

              

(10.7b) 

      
   

      
  

 
 

 

 

  

 
 

  

  
            

  

 
    

  

 
    

where   ,   and    are given by (5.14). 

10.2  Equations of Motion 

The conservation law of mass (1.27) implies by the use of 

     
  

  
       

 

    
 

            (10.8) 

to   
 

    the well-known conservation law 

 
    

  
  

 

   
 
           . (10.9) 

Hence, the conserved mass   is 

                . (10.10) 
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The equations of motion (5.35) use the Christoffel symbols       
  which are 

omitted and can be found in the appendix of         . It is worth to mention that 

we have no gauge problem in contrast to the theory of general relativity 

considered by Shibata et al.          which implies some difficulties. To get the 

equations of motion given by (5.35) to post-Newtonian accuracy the energy 

tensor of matter        must be calculated to   
 

   . Let us introduce the 

velocity 

              
 

     
   

 
   

 

 
         . (10.11) 

Replace   of (10.4) by  

      
   

      
    . (10.12) 

Put 
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 (10.13) 

Then, the equations of motion to   
 

    are (i=1,2,3): 

     
    

  
     

   
    

   
  

(10.14) 
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   .  

In the article          the special case       is considered. Furthermore, 

the two results of          and the equations of motion (10.14) with (10.8) 

cannot be compared with one another because the time-derivatives on the right 

side in          are not completely eliminated. In addition, the function      

does not appear in Einstein’s cosmological models. By the introduction of the 

proper time    given by (8.1) the function      can be eliminated by 

     
   

   
     

   
     ,  

  

   
 

  

  

  

   
     . (10.15) 

By multiplication of relation (10.14) with    and the use of (10.15) it follows 

that   does not appear in the new equations of motion by the use of the proper 

time    which is used by general relativity. 

It is worth to mention that the special case where the universe is neglected, i.e.  

                      , 

the equations of motion (10.14) are studied in chapter 5.1 where the explicit 

form of the equations is not stated. In chapter V the energy-momentum (5.1) is 

used to compare post-Newtonian approximation of flat space-time of gravitation 

and of general relativity. 
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All the calculations of the represented results in this chapter can be found in 

the article         . 

10.3  Newtonian and Long-Field Forces 

In this sub-chapter we will consider only the post-Newtonian long-field 

cosmological expression  

   
  

 

                 

      
     (10.16) 

of the non-stationary universe and  compare (10.16) with the Newtonian force 

   
   

 

   
           

       
    . (10.17) 

In the following we consider spherical symmetry with Euclidean distance   

from the centre of the body. We get 
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.  

Let us assume that the radius   is greater than that of the distribution of 

matter and the post-Newtonian force expression (10.16) compensates the 

Newtonian force. We get compensation of the two forces for 

 
 

   

 

   
    

  
. (10.18) 

Hence, it follows 

             
   

 . (10.19) 

Equation (9.3) implies that at present time     i.e.           

  and         
     herefore, the post-Newtonian force   

 is only important on 

very large scales.  

Let us consider the universe at later times, i.e. in the future. Then, it holds 

with  
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for           by the results of chapter VII the relations 
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Hence, for  

                 
 

           

we have  
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Elementary calculations yield 

         
  

 
    

   . (10.21) 

Hence, we get by the use of (10.19) 
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Therefore, the radius where the two forces compensate one another is 

decreasing with increasing time under the assumption       

The case      gives under the assumption (7.44b) by virtue of (7.45b) and 

(7.46) the solutions for the universe 
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Elementary calculations imply 

        
 

 
  

  

 
.  

This result yields by the use of (10.19) 

   
 

 

 

  
        

 

  
              

 (10.24) 

with a suitable constant     Hence,the radius where the two forces  compensate 

one another is increasing in the course of time.  

Therefore, the radius where two forces compensate one another are quite 

different for the two cases. This radius decreases in a universe with     and 

increases in a universe with     in the course of time. 

Summarizing, it follows that in the neighbourhood of a spherically symmetric 

body the large scale-structure in the universe is not important compared to the 

Newton force of this body. These results are also contained in the article 
        . 
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11.1  Preferred Reference Frame 

In this sub-chapter the preferred reference frame    is shortly stated. In this 

frame    the metric is the pseudo-Euclidean geometry, i.e.  

                              (11.1a) 

with 

                 ,    
         

    (i j). (11.1b) 

In addition, the inverse tensor      is given by 

    
       

 . (11.2a) 

It follows 

     
     

     
  ,     

        
   (i j). (11.2b) 

Let           
      be a constant velocity vector and put  
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Then, the Lorentz-transformations 
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do not change the line-element (11.1). All the quantities in    are subsequently 

denoted with a prime and we put  
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The inverse formulae are 
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 (11.6) 
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Hence, the transformations (11.4) and (11.6) give the possibility to transform 

a known event in    into the same event moving with constant velocity    in     

These are the well-known results of special relativity but the transformations 

(11.4) and (11.6) are always in in the same frame    in contrast to the 

interpretation of special relativity where the transformations give the same 

result in a uniformly moving frame with velocity   .The light velocity in the 

preferred frame    is always the vacuum light velocity    

11.2  Non-Preferred Reference Frame 

Let us now consider a reference frame   which moves with velocity     
               relative to the preferred frame   . All the results of this sub-

chapter can be found in the article         . 

The non-preferred reference frame   is received from the preferred frame    
by the transformations 

         (i=1,2,3),        
     

  

 
 . (11.7a) 

The inverse transformation is 

       ,  (i=1,2,3),           
  

 
 . (11.7b) 

The metric follows from (11.1). We get  

             
   

 

   

 
     (i; j         

(11.8a) 
  

   

 
     (1, 2, 3; j=4) 

     
   

 
     (i=1; j=1, 2, 3) 

                   (i=j=4) 

with 

                  . (11.8b) 

The inverse has the form 
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 (11.9) 

Elementary calculations give the absolute value of light-velocity 

           
  

 
        (11.10) 

where   denotes the angle between the vectors   of light-velocity and   . Hence 

the light-velocity is anisotropic. 

We consider the Michelson-Morley experiment. Let   be the length of the 

arms of the apparatus. Then, the total time for the travelling of the ray is 

   
 

 
     

  

 
           

  

 
               

  

 
  (11.11) 

Therefore, the null-result of Michelson-Morley is received. The 

transformations (11.7) give the result of an event studied in the preferred frame 

   for the same event as it would appear in the non-preferred frame   and vice 

versa. 

We will now study the transformations in   which correspond to the Lorentz-

transformations in   , i.e. they transform an event in   as it appears in   when it 

has the velocity    measured in   . We have the formulae (11.7) and for the 

moving object the same transformations hold, i.e. 

            (i=1,2,3),      
         

  

 
 . (11.12) 

The transformations (11.7) and (11.12) yield from the transformations (11.4) 

by elementary computations the result 
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The inverse formulae are 
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(11.13b) 

Any event computed in   at rest can be calculated in  when it moves with 

velocity     

The four-velocity in   is 

 
   

  
  

  

  
 

   

  
 
   

  
 
   

  
   

and in    the four-velocity is 
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The last two relations give by the use of (11.7) and the standard 

transformations for the velocities in   and   : 

 
  

  
 

   

   

 

   
 

 

   

   
 
  

 
 
 (11.14a) 
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In the special case that 
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We will now give the transformation formulae for computing in the frame   

an event which takes place in the frame   . In the frame   the frame    is 

described by the velocity       in the formula (11.13), i.e. 
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 (11.16) 

The transformation law from   to    is given by (11.7a) which implies  
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 (11.17a) 

The inverse formulae are given by 
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 (1.17b) 

The formulae (11.17) are given at first by Tangherlini          and later on 

by Marinov         . Marinov stated the measurement of the velocity of the 

Earth of about  
  

 
       in agreement with the observed velocity relative to the 

CMB. Hence, we can identify the Earth with the non-preferred frame   and the 

CMB frame with the preferred frame      

All these results can be found in the article of Petry         . Furthermore, 

the paper contains in the non-preferred frame   the equations of Maxwell in a 

medium, the equations of motion of a point particle in the electro-magnetic field. 
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In addition, the experiments of Hook and Fizeau are studied being in agreement 

with the observed results. The Doppler-effect is also studied in the reference 

frame  . All these studies are omitted here. 
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In this sub-chapter for some recently received experimental results theoretical 

essays are given to explain these results. 

12.1  Anomalous Flyby 

In this chapter an explanation of the anomalous Earth flyby is given. We 

follow along the lines of the article          . Let us consider an observer in the 

preferred reference frame    of the Earth. The boundary of the Earth is  

          
  

 
              

  

 
                (12.1) 

where   denotes the radius of the Earth and   is the time of one day. The 

velocity of the boundary is given by 

 
   

   
 

   

 
     

  

 
             

  

 
           . (12.2) 

The velocity of a distant object (spacecraft) moving relative to the observer in 

   can be given by 

 
    

   
                              (12.3) 

where   and   are fixed.  

The motion of several space-crafts during the near Earth flyby shows an 

unexplained frequency shift which is interpreted as unexpected velocity change 

called Earth flyby anomaly. Let us now consider an observer on the boundary of 

the rotating Earth, i.e. in the non-preferred reference frame   moving with 

velocity 

    
   

   
. (12.4) 

The proper- time in this frame is by the use of (11.8) 
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Therefore, the transformations from the preferred reference frame    of the 

non-rotating Earth into the preferred frame   of the rotating Earth can be given 

by (compare (11.7)) 

         ,               
  

 
 
 

 

  

  
  . (12.6) 

Let       
    

    
    

   be the wave four-vector of a plane wave in    then 

the corresponding wave four-vector                 in   has by the 

transformation rules  

      
    

   
       (i=1,2,3,4)  

the form 

         (i=1,2,3),           
  

 
 
 

 

  

  
  .  

The last relation gives for the frequency   on the rotating Earth  

         
  

 
 
 

 

  

  
   (12 7) 

where    is the frequency measured in   . In the frame    the well-known 

Doppler-frequency formula 

           
 

 

   

   
       

  
   

   
    

holds where  

      
 

 

   

    
 

 
    

  

and    
   

   

   
  denoted the angle between the light-velocity     and 

   

   
. Therefore, 

we have in   by the use of (12.7) for the arriving frequency   of the photon 

emitted by the moving object 

          
 

 

   

   
       

   
   

   
      

  

 
 
 

 

  

  
  .  

This yields the frequency shift 

 
    

   
   

  

 
 
 

 

  

  
 . (12.8) 
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Let the indices    and    mean after and before the perigee. Then (12.8) 

gives for the two-way frequency jump 

  
  

   
    

   

 
 
 

 

   

  
   

   

 
 
 

 

   

  
   (12.9) 

Let us now assume that for distant objects 

 
   

  
   

   

  
     .  

We now apply the result (12.9) to the rotating Earth with velocity (12.4) with 

(12.2) and a distant object moving with velocity (12.3). It follows 

 
  

   
 

 
 

 
 
   

 
               

  

 
  
                

  

 
           

(12.10) 

where    is the time when the photon emitted at the distant object arrives at the 

observer. For the special case 

 
  

 
  
    ,  

  

 
  
     (12.11) 

formula (12.10) gives the two-way frequency jump 

  
  

  
  

 

 
 

   

 
                  . (12.12) 

Hence, an observer at the poles, i.e.     
 

 
 does not measure a frequency 

jump. Furthermore, there is no frequency jump when the spacecraft moves 

symmetrically about the plane of the equator, i.e.       .  

It is an open question whether the formula (12.12) or the more general 

formula (2.10) may explain the anomalous flyby of all the different spacecrafts.  

It is worth to mention that the measured frequency jump doesn’t imply a 

jump of the velocity of the spacecraft passing near the Earth. This may be the 

reason for the difficulty to explain the anomalous Earth flyby. The idea that the 

rotation of the Earth may explain the flyby anomaly is at first stated by 

Anderson           It is worth to mention that the formula in          agrees 

with formula (12.12) for     , i.e. the observer is on the equator.  
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A great value of the flyby anomaly is measured by the spacecraft NEAR. The 

spacecraft ROSETTA showed in the years 2007 and 2009 no flyby anomaly 

(see e.g. http) whereas the formula in          predicts a small jump. It may be 

that formula (12.12) implies a very small frequency jump of ROSETTA if the 

observer has a suitable declination   . Mbelek            also studies the 

rotating Earth by the use of the transverse Doppler effect of special relativity 

and by some non-standard considerations. 

General remarks about the problem of explaining the flyby anomaly can be 

found in       . 

12.2  Equations of Maxwell in a Medium 

We consider a reference frame for which the pseudo-Euclidean geometry 

holds. The equations of Maxwell in empty space have a simple form and are 

derived from a Lagrangian. In a medium magnetic permeability and electric 

permittivity exist. The equations of Maxwell in a medium are also well-known 

but they cannot be derived as in empty space.  

In addition to the pseudo-Euclidean metric a tensor of rank two is stated with 

which the proper-time in a medium is defined. The theory of Maxwell now 

follows along the lines of empty space. We follow the article of Petry          . 

Similar considerations can be found in the book of Hehl et al.          in the 

chapter about the metric by an alternative method. 

We start from the pseudo-Euclidean metric (1.1), (1.4) and (1.5). The 

equations of Maxwell in a medium are well-known and are stated in many 

textbooks. They have the form 

       
 

 

  

  
 

  

 
 ,          , (12.13a) 

       
 

 

  

  
  ,         (12.13b) 

with the electric current density              and the electric charge  . We 

assume a simple medium with electric permittivity   and magnetic permeability 

 . The connection between electric and magnetic fields   and   and the derived 

fields   and   is given by  

     ,      . (12.14) 

The absolute value of light-velocity in a medium is 
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 (12.15) 

where   is the refraction index of the medium. 

We now define in analogy to the theory of gravitation in flat space-time in 

addition to the metric the tensors 

                     
 

  
   (12.16a) 

with the inverse tensor 

       
 

  
               . (12.16b) 

The proper-time in the medium is given by 

                             
 

  
       . (12.17) 

We get from (12.17) by the use of      the light-velocity (12.15). 

Let    (i=1,2,3,4) be the electro-magnetic potentials and define the anti-

symmetric tensors 

     
   

    
   

   
. (12.18a) 

Furthermore, we define the tensors 

               (12.18b) 

and let                 be the electric four-current density. We consider the 

covariant differential equations 

 
 

       
  

 
    (i=1,2,3,4) (12.19a) 

 
 

       
 

       
 

           (i,j,k=1,2,3,4). (12.19b) 

It immediately follows by the definition (12.18a) that the equations (12.19b) 

are fulfilled. 

The electric field   and the magnetic field   are defined by  

                ,                   (12.20a) 
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then, the differential equations (12.19b) are identical with the equations (12.13b) 

of Maxwell. 

Put for the derived fields 

                ,                 . (12.20b) 

Then, the differential equations (12.19a) are identical with the equations 

(12.13a) of Maxwell. It follows by (12.20) and (12,16) 

   
 

 
 ,       . (12.21) 

Hence, we have received a reformulation of the equations of Maxwell in a 

medium similar to the equations of Maxwell in empty space. 

Since the relations (12.19b) are fulfilled by the use of (12.18a) the potentials 

   must be calculated by relation (12.19a), i.e., for constant values of   and   

 

       
   

    
   

     
  

 
     .  (i=1,2,3,4) 

By the use of the Lorentz-gauge  

 
 

             (12.22) 

the relation can be rewritten in the form 

 
 

          

     
  

 
     .   (i=1,2,3,4) (12.23) 

Hence, we get four differential equations (12.23) with the gauge condition 

(12.22) for the four potentials    (i=1,2,3,4). 

The Lagrangian for the electro-magnetic field is 

     
 

 
       

  

 
     (12.24) 

with the definition (12.18). The energy-momentum tensor of the electro-

magnetic field has the form 

      
  

 

  
        

 

 
  

        . (12.25a) 

The tensor 

                
  (12.25b) 
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is symmetric. 

The equations of motion of a charged particle in the electro-magnetic field 

follow from the conservation law of the whole energy-momentum, i.e. 

 
 

         
       

     (12.26) 

with 

      
         

   

  

   

  
 (12.27) 

where      denotes the charge density. 

All these results can be found in the article            The equations of 

Maxwell in a medium are also studied in a non-preferred reference frame (see 

sub-chapter 11.2). 

12.3  Cosmological Models and the Equations of Maxwell 

in a Medium 

We will now state a combination of electrodynamics in a medium (chapter 

12.2) and the universe given by the use of absolute time    by formula (8.6). The 

proper time in the universe is given by (8.6). In chapter 12.2 the used time   is 

the absolute time for the equations of Maxwell and in the universe the time    is 

the absolute time. Therefore, it is ingenious to use in this sub-chapter for the 

equations of Maxwell in the universe the absolute time     

In the following we put as combination of chapter 12.2 and of the universe 

for the potentials of electrodynamics in a medium and of gravitation 

                             
 

  
  (12.28a) 

with the inverse tensor 

        
 

  

 

  
                . (12.28b) 

Then, the proper-time   has the form 

           
         

 

  
          (12.29) 
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The absolute value of light-velocity is again stated by (12.15). The metric is 

by the use of (8.5): 

                            . (12.30) 

In the following, the covariant derivatives relative to the metric (12.30) are 

used. 

Define  

             ,                (12.31a) 

and use the tensor       given by (12.16). Put 

           ,             . (12.31b) 

Furthermore, we use the pseudo-Euclidean metric (1.1) with (1.5).  

Let    be the electro-magnetic potentials and define by the use of the 

covariant derivatives relative to the metric (12.30) the electro-magnetic field 

strength by 

              . (12.32a) 

It follows 

     
   

    
   

   
. (12.32b) 

In addition, to the relations (12.32) we define a tensor      (see chapter 12.2): 

    
            . 

The covariant equations of Maxwell are given by 

   
   

   
 

   

     
  

 
  

 
 

  

  
 

   

  .   (i=1,2,3,4) (12.33a) 

In addition we have the covariant equations 

                    . (12.33b) 

The equation (12.33b) is identically fulfilled by virtue of (12.32a). We get 

from (12.28) and (12.16) 
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,     

  

  
,         ,      . 

The equations of Maxwell (12.33a) can be rewritten  

 
 

 

 

   
          

  
 

  

 

 

 
  

.     (i=1,2,3,4) 

We define for i,j=1,2,3,4 the tensor (in analogy to chapter 12.2): 

              . (12.34) 

Then, the equations of Maxwell have the form 

  
 

 

 

   
    

  
 

  

 

 

 
  

.    (i=1,2,3,4) (12.35) 

The only non-vanishing Christoffel symbol of the metric (12.30) is 

   
  

 

   

 

    
     . 

Therefore, the equations of Maxwell are 

 
 

   

 

    
 

 
           

  

 

 

 
      (i=1,2,3,4) (12.36) 

The definitions (12.18) and (12.20) give again the relations (12.21). 

Furthermore, the equation of Maxwell (12.36) has for constant          the 

form 

       
 

 

  

    
  

 
        ,         

  

 
         (12.37a) 

where               and            . 

The relations (12.33b) are rewritten in the form 

       
 

 

  

   
  ,          . (12.37b) 

The conservation of the streaming vector 

  
      

has the form 

 
 

             . (12.38) 
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The equations (12.37) and (12.38) are the equations of Maxwell in a medium 

where (12.21) holds and which is contained in the universe. They are given 

relative to the metric (12.30). 

12.4  Redshift of Distant Objects in a Medium 

Here, we follow along the lines of article            We assume that the 

proper-time   is given by (12.29) where    is the absolute time in the universe. 

We get by the use of (12.29) for an atom at rest which emits a photon at time     

          
  

   

  
   . (12.39) 

Here,    and    mean the refraction index and the permittivity of the medium 

in which the photon is emitted. 

This means that the emitted frequency at time     is given by 

              
  

   

  
   (12.40) 

where    is the frequency emitted by the same atom at rest, at present time   
  

and without  medium. The photon moves to the observer. The equations of 

motion (1.30) imply for i=4 

 

   
     

    

  
  

 

 

    

    

    

   

    

   

   

  
  

We assume that the refraction index and the permittivity are depending on 

space but not on the time. This is justified by the equations of Maxwell (12.36) 

with the notations (12.32), (12.34), (12.16) and (12.21). Hence, we have 

 

   
     

    

  
   

  

    
      

   

   
 
 

  
 

 
 

 
 

   

  
  

It follows by the use of (12.29) 

  

   
       

 
  

 

 
 

 
  

   

   
 
 
 

   

  

We get by the substitution of this relation into the above equation 
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for the velocity of light, i.e. the energy of the photon during its motion is 

conserved. This means that the frequency is not changed by the use of the law 

of Planck. Hence, the frequency   which arrives at the observer is 

               
  

   

  
  .  

This yields the redshift 

   
  

 
   

 

      

  

  
     . (12.41) 

Taylor expansion of      yields 

    
                     

       
 

 
          

           

It is assumed that the photon’s path from source to receiver is only a small 

fractional part that is within the medium, i.e. by virtue of (8.14) it holds 

  
    

   
 

 
  This implies by the use of the initial conditions 

            
 

 
 

 

 

       

  
    

 

 
 

 
   (12.42a) 

Relation (8.15) yields by the use of (7.17), (7.28) and       

 
       

  
    

 

 
  . (12.42b) 

The redshift (12.41) is by the use of (12.42) given in the form 

   
  

  
      

  

  
      

 

 
  

 

 
  

  

  
      

 

 
 

 
. (12.43) 

The redshift formula (12.43) gives the whole value of the redshift. It follows 

partly from the universe and partly from the medium in which light is emitted. 

An intrinsic redshift is discussed by several authors who neglect an expanding 

universe. (see e.g.         ). It is shown in the articles 
                                      that the redshift in the universe can 

also be interpreted with the aid of the different kinds of energy which are 

transformed into one another in the course of time as stated in chapter VIII. The 

interpretation of an expanding space is not necessary. An extensive study of a 

non-expanding universe exists, too (see e.g.         ,          ,         . 
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Let us assume for the refraction index   and for the permittivity the 

representation 

        ,          .  

Then, we get from (12.43) 

      
 

 
   

 

 
      

  

  
      

 

 
  

 

 
  

  

  
      

 

 
 

 
   (12.44) 

Discussion: 

(1) Relation (12.43) or (12.44) implies for a fixed redshift of a galaxy 

(quasar) in a medium that the distance to this object is in general, i.e. 

  

  
        

smaller than without medium.  

(2) The linear Hubble law can give an overestimate of the Hubble constant 

which depends also on the different media. 

(3) Quasars may be nearer by the use of (12.43) or (12.44) than by the 

standard Hubble law. This yields that the measured energy emitted from 

these quasars is smaller than generally assumed.   

(4) Two galaxies (quasars) in different media can give the same redshifts 

although the distances to these objects are different. 

(5) Galaxies and quasars with nearly the same distances can have quite 

different redshifts which depend on the media in which light is emitted. 

Measurements confirm this result (see e.g.,                  ). 

(6) It may be that dark energy is not necessary, i.e.      because formula 

(12.43) or (12.44) may explain the redshifts of galaxies, of quasars, too. 

Furthermore, there exists no age problem for the universe because the 

absolute time   must be used instead of the proper-time    (see (8.19)). 

12.5  Flat Rotation Curves in Galaxies with Media 

In this chapter we assume that every object, e.g. Earth, Sun, galaxy, quasar, 

etc. is surrounded by a medium. Furthermore, let us omit the universe, i.e. the 

objects are not too far from us. In addition to the object we consider the 

surrounding medium. In the following, only the approximations of Newton are 

used. Hence, we have             implying by the use of the Newtonian 
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approximation the line-element of the pseudo-Euclidean metric and the proper-

time 

                 
 

   
 

           . (12.45) 

Here, the Newtonian potential is given by (2.32) with (2.31) in the exterior of 

the object: 

   
   

 
. (12.46a) 

Furthermore, let us assume that the refraction index is of the form 

        (12.46b) 

with 

       . (12.46c) 

This yields the approximate proper-time    

                       
 

           . (12.47) 

The equations of motion (1.30) give to the lowest order 

    

    
 

 

    

         (i=1,2,3)  

i.e. we get 

 
    

    
     

    
  

   
   (i=1,2,3). (12.48) 

Standard methods yield the result 

  

 

 

  
 
  

  
 
 

 
 

  
          (12.49) 

Furthermore, we get an anomalous acceleration into the radial direction 

      
     

  
. (12.50a) 

We will now assume the simple form 

         
 

 

 

  
 

 

 
 

 

  
 

 
  (12.50b) 
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with        and where    is the boundary of the medium. It is assumed 

that the boundary of the medium    is great compared to the boundary of the 

body. A solution of (12.49) is given by 

  
  

  
 
 

          (12.51) 

where the constant of integration is set equal to zero. This result gives the 

rotation curves, as e.g. of galaxies, of stars etc. The derivation of this result 

doesn’t correspond to the usual one of rotation curves but it has regard to the 

refraction index. 

The equations (12.51), (12.50) and (12.46) give the rotation curves and the 

anomalous acceleration  

  
  

  
           

 

 

 

  
 

 

 
 

 

  
 

 
     

   

 (12.52a) 

and 

       
    

  
 

 

 
 

 

  
 . (12.52b) 

It is worth to mention that for      equation (12.52a) gives the well-known 

flat rotation curves.  

The results (12.52) are applied to the Sun system and to galaxies: 

(1) Sun system: We consider the Pioneers which give an anomalous 

acceleration (see e.g.            

               

   (12.53) 

into the direction to the Sun. There is an extensive study of the 

anomalous acceleration which is confirmed by several authors. Recently, 

Turyshev et al.          measured a decrease of the anomalous 

acceleration. This supports the explanation of an anisotropic emission of 

on-board heat which is also discussed by          and by many 

otherauthors. 

Relation (12.52b) gives an anomalous acceleration to the Sun which 

implies by the use of (12.53) with   
 

 
   (           

               

                (12.54) 
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The result (12.52b) with (12.54) gives an anomalous acceleration which 

also decreases with the distance from the centre of the Sun. Hence, we 

have a quite different interpretation of the Pioneer anomaly without an 

anisotropic emission of on-board heat although the anisotropic emission 

is the presently accepted interpretation. 

There are no flat rotation curves for the planets moving around the Sun 

by a suitable boundary   of the medium. This follows by formula 

(12.52a) with (12.54).  

(2) Galaxies:Many galaxies show flat rotation curves (see e.g.         ). 

This result was already observed by Zwicky. Many authors assume dark 

matter to explain this result. But there are also other alternatives to 

explain the flat rotation curves. Milgrom          suggests a modified 

Newton law.  

In this chapter the rotation curves are given by the use of (12.52a), i.e. 

  
  

  
           

 

 

 

  
 

 

 
 

 

  
 

 
     

   

  (12.55) 

Here, the last expression under the square root yields the well-known rotation 

curves. Let us assume that    is very large then the condition 

        
   

 
 (12.56) 

gives flat rotation curves. The luminal mass of many galaxies is 

                    (12.57) 

with a suitable constant   depending on the galaxy.  

The observed distance   where flat rotation curves arise is given by  

              (12.58) 

with a suitable constant   . Relation (12.56) yields for flat rotation curves the 

condition  

       
 

  
    . (12.59) 

This implies by the use of (12.52a) flat rotation curves with velocity  
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. (12.60) 

The inequality (12.60) gives the correct order of the velocity of flat rotation 

curves of galaxies. But every galaxy must be studied separately in detail. 

Hence, the results about flat rotation curves of galaxies imply by the use of 

surrounding media the correct order of the measured velocities. Surrounding 

media of galaxies may therefore explain flat rotation curves without the 

assumption of dark matter. Contrary, all the dark matter contained in galaxies is 

not enough to explain all the dark matter in the universe. Therefore, media give 

the possibility to explain the results without the assumption of dark matter. 

Hence, we may ask whether media can be interpreted as the assumed dark 

matter. 

Let us compute the density of dark matter produced by the reflection index. 

The law of Newton  

 
 

  

 

  
        

  
         (12.61) 

where    denotes the density of the assumed dark matter implied by the 

refraction index (12.50b). We get from formula (12.61): 

     
   

   

 

  

 

 
   

 

  
 . (12.62) 

The boundary of the dark matter is the radius    given by (12.50b).The mass 

of the dark matter is by the use of (12.62) 

    
  

 
        

    

  
  . (12.63) 

Hence, it follows by the use of (12.54) that the assumed dark mass of the 

surrounding Sun is small compared to the mass of the Sun. But the dark mass of 

surrounding galaxies is for sufficiently large radius   much greater than the 

luminous mass of the galaxy by virtue of (12.57), (12.58) and (12.59). 

The density (12.62) of the assumed dark matter would give a singularity in 

the centre of the body but it is worth to mention that the medium surrounds the 

body and it is not the assumed dark matter. 
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