Dead wood, referred to here as necromass, is considered to be an important reservoir of forest carbon. In Congo, studies on the estimation of carbon in deadwood are scarce, so very little data exists that could contribute to the reflection on the national forest carbon measurement and monitoring program. It is in this context that this study on the estimation of forest carbon stored in dead wood from a secondary forest, in the "Bateke Plateau" landscape, was conducted. One hundred and three (103) standing deadwood samples and thirty-two (32) ground-lying deadwood samples, all ≥ 10 cm in diameter, were recorded over 1.79 km of transects, using the linear intersection sampling method. These deadwoods are mostly not in an advanced stage of decomposition, and are most abundant in smaller diameter classes. On average, the total carbon stock contained in the necromass is 0.067 t. ha-1 (±0.08). This carbon stock does not represent a significant share (0.01%) of the total above-ground carbon for trees ≥ 10 cm in diameter in plot 1. This study also showed that the carbon stock in the necromass varies very little between the study plots but not according to the type of dead wood considered. These results suggest that it is very important to reduce anthropogenic pressure on the forests of the Léfini Wildlife Reserve in order to strengthen carbon sinks.
Published in | American Journal of Biological and Environmental Statistics (Volume 10, Issue 4) |
DOI | 10.11648/j.ajbes.20241004.13 |
Page(s) | 114-123 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Forest Carbon, Necromass, Above-Ground Biomass, Dead Wood
[1] | André J. 1997. The heterotrophic phase of the silvigenetic cycle. INRA's Environmental Files, 15 (special on forests): 87-99. |
[2] | Baker T. R., Coronado E. N. H., Phillips O. L., Martin J., Van der Heijden G. M. F., Garcia M., Espejo J. S., 2017. Faibles stocks de débris ligneux grossiers dans une forêt amazonienne du sud-ouest. Oecologia, vol 152, pp: 495–504. |
[3] | Bocko Y. E., Ifo A. S., Loumeto J. J., 2017. Quantification des stocks de carbone de trois pools clés de carbone en Afrique Centrale: Cas de la forêt marécageuse de la Likouala (Nord Congo). Revue scientifique européenne. Vol. 13, (5), pp: 438-456. |
[4] | Brown S., 2002. Mesurer le carbone dans les forêts: état actuel et défis futurs, Pollution de l’environnement, vol 116, (3), pp: 363-372. Brown S., 2002. Mesurer le carbone dans les forêts: état actuel et défis futurs, Pollution de l’environnement, vol 116, (3), pp: 363-372. |
[5] | Carlson B., 2013. Gabon’s Overlooked Carbon. A tropical forest of coarse woody debris. Master: Environmental Management degree, Duke University, 38p. |
[6] | Carlson B., Koerner S. E., Medjibe V. P., White L. T., Poulsen J. R., 2016. Deadwood stocks increase with selective logging and large tree frequency in Gabon. Global Change Biology, vol 23, (4), pp: 1648-1660. |
[7] | Chambers J. Q., Higuchi N., Schimel J. P., Ferreria L. V., and Melack J. M., 2000. Decomposition and Carbon Cycling of Dead Trees in Tropical Forests of the Central Amazon. Oecologia, vol 122, (3), pp: 380-388. |
[8] | Chambers J. Q., Higuchi N., Teixeira L. M., Dos Santos J., Laurance S. G., and Trumbore S. E., 2004. Response of Tree Biomass and Wood Litter to Disturbance in a Central Amazon Forest. Oecologia, 141, (4), pp: 596-611. |
[9] | Chave J., Coomes D., Jansen S., Lewis S. L., Swenson N. G. and Zanne A. E., 2009. Towards a worldwide wood economics spectrum. Ecology Letters, vol 12, (4), pp: 351-366. |
[10] | Chao K. J., Phillips O. L., & Baker T. R., 2008. Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research, vol 38, (4), pp: 795-805. |
[11] | Chao K.-J., Phillips O. L., Baker T. R., Peacock J., Lopez-Gonzalez G., Vasquez Martinez R., Monteagudo A. and Torres-Lezama A. 2009. After trees die: quantities and determinants of necromass across Amazonia. Biogeosciences Discussions 6: 1615–1626. |
[12] | Clark D. F., Kneeshaw D. D., and Antos J. A., 1998. Coarse woody debris in sub boreal spruce forests of west-central British Columbia. Canadian Journal of Forest Research, vol 28, (2), pp: 284–290. |
[13] | Eaton, M. J., 2005. Woody Debris and the Carbon Budget of Secondary Forests in the Southern Yucatán Peninsular Region. Thesis. University of Virginia, 84 p. |
[14] | Ekoungoulou R., Niu S., Folega F., Nzala D. Liu X., 2018. Carbon Stocks of Coarse Woody Debris in Central African. Sustainability in Environment, Vol 3, (2), pp: 142-160. |
[15] | Fayolle A., Ngomanda A., Mbasi M., Barbier N., Bocko Y., Boyemba F., Couteron P., Fonton N., Kamdem N., Katembo J., Kondaoule H. J., Loumeto J. J., Maidou H. M., Mankou G., Mengui T., Mofack G. I., Moundounga C., Moundounga Q., Nuimbous L., Nsue Nchama N., Obiang D., Ondo Meye Asue F., Picard N., Rossi V., Senguela Y. P., Sonké B., Viard L., Yongo O. D., Zapfack L., Medjibe V. P., 2018. A regional allometry for the Congo basin forests based on the largest ever destructive sampling. Forest Ecology and Management, vol 430, pp: 228-240. |
[16] | Franklin J. F., Shugart H. H. & Harmon M. E., 1987. Tree death as an ecological process. The causes, consequences, and variability of tree mortality. Bioscience 37: 550–556. |
[17] | Giardina F., Konings A. G., Kennedy D., Alemohammad S. H., Oliveira R. S., Uriarte M., Gentine P., 2018. Tall Amazonian forests are less sensitive to precipitation variability, Nature Geoscience, vol 11, (6), pp: 405-409. |
[18] | Gove J. H., Ringvall A., Stahl G. and Ducey M. J. 1999. Point relascope sampling of downed coarse woody debris. Can. J. For. Res. 29: 1718–1726. |
[19] | Harmon M. E., Franklin J. F., Swanson F. J., Sollins P., Gregory S. V., Lattin J. D., Anderson N. H., Cline S. P., Aumen N. G., Sedell J. R., Lienkaemper G. W., Cromack Jr K., Cummins K. W., 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in ecological research, vol 15, pp: 133–302. |
[20] | Hérault B., Baraloto C., Paine T. C., Poorter L., Bauchene J., Bonal D., Domenach A. M., Patino S., Roggy J. C., Chave J., 2010. Decoupled leaf stem economics in rain forest trees. Ecology Letters, vol 13, (11), pp: 1338-1347. |
[21] | Harris N. L., Brown S., Hagen S. C. Saatchi S. S., Petrova S., Salas W. Hansen M. C., Potapov P. V. and Lotsch A. 2012. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science. Vol. 336, p. 1573–1576. |
[22] | Ifo A. S., 2010. Apports de carbone au sol et stock dans deux types forestiers (forêt galérie et forêt secondaire) des plateaux tékés. Thèse, Faculté des Sciences, Université Marien Ngouabi, Brazzaville, Congo, 194p. |
[23] | Ifo A. S., Mbemba M., Koubouana F., Binsangou S., 2017. Stock de carbone dans les gros débris ligneux végétaux: cas des forêts pluvieuses de la Likouala, République du Congo. European Scientific Journal, vol 13, (12), pp: 384-399. |
[24] | Kouassi K. A., 2018. Estimation du stock de carbone dans les compartiments de bois mort. Mémoire de fin d’Etudes pour l’obtention du diplôme d’Agronomie Approfondie, Institut National Polytechnique Félix Houphouet Boigny, Yamoussoukro, Côte d’Ivoire, 57p. |
[25] | Lambert R. L., Lang G. E., Reiners W. A., 1980. Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology, vol 61, (6), pp: 1460–1473. |
[26] | Palace M., Keller M., Asner G. P., Silva J. N. M., and Passos C. 2007. “Necromass in Undisturbed and Logged Forests in the Brazilian Amazon”. Forest Ecology and Management 238 (1-3). Elsevier BV: 309–18. |
[27] | Pan Y., Birdsey R. A., Fang J., Houghton R., Kauppi P. E., Kurz W. A., Phillips O. L., Shvidenko A., Lewis S. L., Canadell J. C., Ciais P., Jackson R. B., Pacala S. W., McGuire D., Piao S., Rautiainen A., Sitch S., Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science, vol 333, (6045), pp: 988-993. |
[28] | Pearson T., Brown S., 2005. Guide de mesure et de suivi du carbone dans les forêts et prairies herbeuses. Ecosystem Services Unit. Arlington, 39p. |
[29] | Pfeifer M., Lefebvre V., Turner E., Cusack J., Khoo M., Chey K., Peni M., & Ewers R. M., 2015. Deadwood biomass: an underestimated carbon stock in degraded tropical forests? Environmental Research letters, vol 10, (4), 044019. |
[30] | Prentice I. C., Farquhar G. D., Fasham M. J. R., Goulden M. L., Heimann M., Jaramillo V. J., Kheshgi H. S., LeQuere C., Scholes R. J., and Wallace D. W. R., 2001. The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., pp. 183– 237, Cambridge Univ. Press, Cambridge, UK. |
[31] | Pyle E. H., Santoni G. W., Nascimento H. E. M., Hutyra L. R., Vieira S., Curran D. J., Haren J. V., et al., 2008. Dynamics of Carbon Biomass and Structure in Two Amazonian Forests. Journal of Geophysical Research: Biogeosciences 113 (G1), American Geophysical Union (AGU): n/a-n/a. |
[32] |
R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [en ligne], disponible sur
https://www.R-project.org/ , consultéle 10 avril 2020 |
[33] | Rice A., Pyle E., and Saleska S., 2004. Carbon balance and vegetation dynamics in an old growth Amazonian Forest. Ecological Applications, 14: S55–S71. |
[34] | Saatchi S. S., Harris N. L., Brown S., Lefsky M., Mitchard E. T. A., Salas W., Zutta R. B., Buermann W., Lewis S. L., Hagen S., Petrova S., White L., Silman M., Morel A., 2011. Benchmark map of forest carbon stock in tropical regions across three continents, Proceeding of the National Academy of Sciences, vol 108, (24), pp: 9899-9904. |
[35] | Siipola A. L., Siitonen J., et Kallio R., 1998. Amount and quality of coarse woody debris in natural and managed coniferous forest near the timberline in Finnish Lapland. Scandinavian Journal of Forest Research, vol 13, (1-4), pp: 204-214. |
[36] | Situatala L. E., 2017. Variabilité spatiale de deux Pools de carbone forestier (Biomasse aérienne et Bois mort) de la Forêt galerie de la Lesio-Louna des Plateaux Batéké. Memoire de licence générale en sciences agronomique foret et environnement. Ecole Nationale Supérieure d’Agronomie et de Foresterie, Université Marien N’gouabi, Brazzaville, Congo, 59p. |
[37] | Trumper K., Bertzky M., Dickson B., van der Heijden G., Jenkins M., Manning P. 2009. Le remède naturel ? Le rôle des écosystèmes dans l’atténuation des changements climatiques. Une évaluation rapide du PNUE. Programme des Nations Unies pour l’environnement, UNEP-WCMC, Cambridge, Royaume-Uni. |
[38] | Uhl C., & Kauffman J. B., 1990. Deforestation, vulnérabilité aux incendies et réactions potentielles des arbres au feu dans l’Est de l’Amazonie. Ecologie, vol 71, (2), pp: 437-449. |
[39] | Van Wagner C. E., 1968. The line intersect method in forest fuel sampling. Forest Science, vol 14, (1), pp: 20-26. |
[40] | WWF, 2002. Le bois mort, un attribut vital de la biodiversité de la forêt naturelle, une lacune des forêts gérées [en ligne], disponible sur researchgate.net, consulté le 22 Août 2020. |
APA Style
Mbete, P., Mankou, G. G. S., Mavoungou, A. Y., Ekandja, F. G., Koubouana, F. (2024). Assessment of Forest Carbon Sequestered in Dead Wood from Secondary Forest, Wildlife Reserve, Lefini Republic of Congo. American Journal of Biological and Environmental Statistics, 10(4), 114-123. https://doi.org/10.11648/j.ajbes.20241004.13
ACS Style
Mbete, P.; Mankou, G. G. S.; Mavoungou, A. Y.; Ekandja, F. G.; Koubouana, F. Assessment of Forest Carbon Sequestered in Dead Wood from Secondary Forest, Wildlife Reserve, Lefini Republic of Congo. Am. J. Biol. Environ. Stat. 2024, 10(4), 114-123. doi: 10.11648/j.ajbes.20241004.13
AMA Style
Mbete P, Mankou GGS, Mavoungou AY, Ekandja FG, Koubouana F. Assessment of Forest Carbon Sequestered in Dead Wood from Secondary Forest, Wildlife Reserve, Lefini Republic of Congo. Am J Biol Environ Stat. 2024;10(4):114-123. doi: 10.11648/j.ajbes.20241004.13
@article{10.11648/j.ajbes.20241004.13, author = {Pierre Mbete and Guénolé Géraud Sidoine Mankou and Alain Yves Mavoungou and Franck Gabrielle Ekandja and Félix Koubouana}, title = {Assessment of Forest Carbon Sequestered in Dead Wood from Secondary Forest, Wildlife Reserve, Lefini Republic of Congo }, journal = {American Journal of Biological and Environmental Statistics}, volume = {10}, number = {4}, pages = {114-123}, doi = {10.11648/j.ajbes.20241004.13}, url = {https://doi.org/10.11648/j.ajbes.20241004.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajbes.20241004.13}, abstract = {Dead wood, referred to here as necromass, is considered to be an important reservoir of forest carbon. In Congo, studies on the estimation of carbon in deadwood are scarce, so very little data exists that could contribute to the reflection on the national forest carbon measurement and monitoring program. It is in this context that this study on the estimation of forest carbon stored in dead wood from a secondary forest, in the "Bateke Plateau" landscape, was conducted. One hundred and three (103) standing deadwood samples and thirty-two (32) ground-lying deadwood samples, all ≥ 10 cm in diameter, were recorded over 1.79 km of transects, using the linear intersection sampling method. These deadwoods are mostly not in an advanced stage of decomposition, and are most abundant in smaller diameter classes. On average, the total carbon stock contained in the necromass is 0.067 t. ha-1 (±0.08). This carbon stock does not represent a significant share (0.01%) of the total above-ground carbon for trees ≥ 10 cm in diameter in plot 1. This study also showed that the carbon stock in the necromass varies very little between the study plots but not according to the type of dead wood considered. These results suggest that it is very important to reduce anthropogenic pressure on the forests of the Léfini Wildlife Reserve in order to strengthen carbon sinks. }, year = {2024} }
TY - JOUR T1 - Assessment of Forest Carbon Sequestered in Dead Wood from Secondary Forest, Wildlife Reserve, Lefini Republic of Congo AU - Pierre Mbete AU - Guénolé Géraud Sidoine Mankou AU - Alain Yves Mavoungou AU - Franck Gabrielle Ekandja AU - Félix Koubouana Y1 - 2024/12/25 PY - 2024 N1 - https://doi.org/10.11648/j.ajbes.20241004.13 DO - 10.11648/j.ajbes.20241004.13 T2 - American Journal of Biological and Environmental Statistics JF - American Journal of Biological and Environmental Statistics JO - American Journal of Biological and Environmental Statistics SP - 114 EP - 123 PB - Science Publishing Group SN - 2471-979X UR - https://doi.org/10.11648/j.ajbes.20241004.13 AB - Dead wood, referred to here as necromass, is considered to be an important reservoir of forest carbon. In Congo, studies on the estimation of carbon in deadwood are scarce, so very little data exists that could contribute to the reflection on the national forest carbon measurement and monitoring program. It is in this context that this study on the estimation of forest carbon stored in dead wood from a secondary forest, in the "Bateke Plateau" landscape, was conducted. One hundred and three (103) standing deadwood samples and thirty-two (32) ground-lying deadwood samples, all ≥ 10 cm in diameter, were recorded over 1.79 km of transects, using the linear intersection sampling method. These deadwoods are mostly not in an advanced stage of decomposition, and are most abundant in smaller diameter classes. On average, the total carbon stock contained in the necromass is 0.067 t. ha-1 (±0.08). This carbon stock does not represent a significant share (0.01%) of the total above-ground carbon for trees ≥ 10 cm in diameter in plot 1. This study also showed that the carbon stock in the necromass varies very little between the study plots but not according to the type of dead wood considered. These results suggest that it is very important to reduce anthropogenic pressure on the forests of the Léfini Wildlife Reserve in order to strengthen carbon sinks. VL - 10 IS - 4 ER -