| Peer-Reviewed

Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes

Received: 15 May 2018     Accepted: 8 June 2018     Published: 27 July 2018
Views:       Downloads:
Abstract

In this research study for the firsttime zirconium doped vanadium oxide nanotubes (VONTs) were synthesized. Zr-doped VONTs were performed by using hydrothermal method. Zr-VONTs prepared 0.02 wt%. The structure and morphology of the nanotubes were investigated by x- ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In contrast to the undoped VONTs, the interlayer distance between oxide layers in the (V0.98Zr0.02 ) x ONTs increases owing to replacement of some V in nanotubes by Zr with a large ionic radius. The results showed that zirconium 0.02wt% doped VONTs complately and the doping Zr into VONTs leads to increasing interlayer distances.

Published in American Journal of Chemical Engineering (Volume 6, Issue 4)
DOI 10.11648/j.ajche.20180604.12
Page(s) 49-53
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Vanadium Oxide Nanotubes (VONTs), Zirconium (Zr), Hydrothermal, Doped

References
[1] R. Rouhani, H. R. Aghabozorg, and M. A. Asad Ababdada, synthesis and characterization of Re-, MO-, and W- doped vanadium oxide nanotubes, taylor & francis Groups, LLC, 1018- 1021, 2011.
[2] R. Tenne, L, Margulis, M. Genut, G. modes, Nature 1992, 360, 444.
[3] Y. Feldman, E. wasserman, D. j. Srolouitz, R. Tenne, Science 1995, 267, 222.
[4] N. G. chopra, R. G. Luyken, K. cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, science 1995, 256, 966.
[5] H. Nakamura, Y. Matsui, L. Am. Chem, Sock. 1995, 117, 2651.
[6] P. Hoyer, Langmuir 1996, 12, 1411.
[7] M. E. Spah, P. Bitterli, R. Nesper, m. Muller, F. krumeich, H. U. Niessen, Angw Chem. Ent. Ed. 1998, 37, 1263; Angew. Chem. 1998, 110, 1339.
[8] Y. R. Hacahan, E. Grunbaum, R. Tenne, J. Sloan, J. L. Hutchison, nature 1998, 395, 337.
[9] D. H. Galvan, J. H. Kim, M. B. Maple, M. Avalos – Berja, E. Adem, Full erene Sci, Technol, 2000, 8, 143.
[10] A. L. Ivanovskii, Russ. chem. Rev. 2002, 71, 175.
[11] M. Brorson, T. W. Hansen, C. J. H. Jacobesn, J. Am. chem. Soc. 2002, 124, 11582.
[12] M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, H. U. Nissen, Angew. Chem., Int. Ed. 37 (1998) 1263.
[13] M. Niederberg, H. J. Muher, F. Krmeich, F. Bieri, D. Gunther, R. Nesper, Chem. Mater. 12 (2000) 1995.
[14] F. Bieri, F. Krumeich, H. J. Muher, R. Nesper, Helv. Chim. Acta 84 (2001) 3015.
[15] Grigoreva, A. V, Anikina, A. V, Tarasor, A. B, sudilin, E. A, knotko, A. V, Volkov, V. V, Dembo, K. A, Tretyakov, Y. D. micromere apology and structure of vanadium oxide nanotubes. Doklady chem, 2006, Ulo, 165-169.
[16] Li,. Zheng, L., zhang, K. F. Feng, X. Q, SU, Z. X. Ma, J. T Synthesis of Ag modified vanadium oxide nanotubes and their antibacterial properties. Mater, Res. Bull. 2008, 43, 2810 -2817.
[17] G. T. Chandrappa, No Steunous, S. Cassaignon, C. bauvais, J. Livage, Hydrothermal Synthesis of vanadium oxide nanotubes from v2 o5 gels, J of catalysis today 78 (2003) 85-89.
[18] Solsona B et al (2001) Vanadium oxide supported on mesoporous MCM-41 as selsctive catalysts in the oxidative dehydrogenation of alkanes. J Catal 203 (2):443-452.
[19] Muhr HJ, Krumeich FSchonholzer UP, Bieri F, Niederberger M, Gaukler LJ, Nesper R (2000) Adv Mater12:231.
[20] Zhang KF, Guo DJ, Liu X, Li, J, Li HL, Su ZX (2006) J Power sources 162: 1077.
[21] Spahr ME, Stoschitzki-Bitterli P, Nesper R, Haas O, Novak P (1999) JElectrochem Soc146:278064-767.
[22] Krumeich F, Muhr HJ, Niederberger M, Bieri F, Schnyder B Nesper R (1999) J Am chem Soc 121:8324.
[23] Ledoux MJ et al (2001) High – yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat conductive materials: β-Sic, Si3N4, and BN, J Catal 203 (2): 495-508.
[24] Minglan Yu, Xueqin Liu, QingSu, Gas sensing of vanadium oxide nanotubes (2012), J of applied surface science 9554-9558.
[25] J. Liu, X. Wang, Q, Peng, Y. Li, Sensors and Actuators B: Chemical 115 (2006) 481-487.
[26] J. Liu, X. Wang, Q. Peng. Y Liu, Advanced Materials 17 (2005) 765-767.
[27] C. Leroy, M. Achard, O. Babot, N. Steunou, P. Masse, J. Livage, L. Binet. N. B run, R. Backov, chemistry of Materials 19 (2007) 3988-3999.
[28] Y. Li, Z. Hung, S. Rong, Sens, Mater 18 (2008) 241-249.
[29] A. Gigorieva, A. Tarasv, E, Godillin, S. Badalyan, M. Rumyantseva, A. Gaskov, A. Bikner, Y. Tretyakov, Mendeleev communications 18 (2008) 6-7.
[30] M. Kanttcheva, Physical Chemistry Chemical Physics 2 (2000) 3-43-3048.
[31] Qing Su, Xueqin Liu, Applied Surface Scince, 258 (2012) 9554-9558.
[32] MartinE. Saleta, Javier currale, H. E. Troiani, S. R. Guevara, R. Sanchez, M. Malta, R. Torresi, in Flounce of Nidopin on vanadium oxide hexadecyl amine multiwall nanotube, science direct (2007) 333-336.
[33] li. F, wang, X, shao, C, Tan, R; liu, Y. W doped vanadium oxide nanotubes synthesis and characterization. Matter let, 2007, 61, 1328-1332.
[34] Mai, L. Q; chen, W; Xu, Q; peng, J. F, Zhu, Q. Y. Mo doped vanadium oxide nanotubes: microstructure and electrochemistry chem. Phys. Let 2003, 382, 307-312.
[35] Jiao, L. Yuan, H.; Wing, y.; Cao, J; Wang, y. Mg intercalation properties in Open – ended Vanadium oxide nanotubes Electro hem. Common. 2005, 7 (4), 431- 436.
[36] Li. Mai, wen chen, Q. XV, J. Feng pen. Q – yaoZhu, Mo doped vanadium oxide nanotubes: micro structure and electro chemistry, chemical physics letters 382 (2003) 307-317.
[37] Bicrif, Krumeich F, muh. HJ, Nesper R (2001) Heluchain Acta 84. 3015.
[38] L. Guo, J. zho, X. wang, x. xu, H. liu, and Y. li, structure and bioactivity of ziroconia, applied ceramic technology, 636- 641 (2009).
[39] Bouhedja L, Stenou N, Maquet J, Livage J (2001) J Solid State Chem162:315.
[40] J. cha, Y. J. Kim, T. J. Kim, chemo. mater. 13 (2001) 18.
[41] J. cho, Y. J. Kim, B. Park, J. Electro hem. Solid State 4 (2001) A159.
[42] Ehsan. kianfar. M. Baghernejad, Y. Rahimdashti, J of Biological forum7 (1):1671-1685 (2015).
Cite This Article
  • APA Style

    Azita Saliman, Hamid Reza Aghabozorg, Sepideh Ketabi. (2018). Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes. American Journal of Chemical Engineering, 6(4), 49-53. https://doi.org/10.11648/j.ajche.20180604.12

    Copy | Download

    ACS Style

    Azita Saliman; Hamid Reza Aghabozorg; Sepideh Ketabi. Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes. Am. J. Chem. Eng. 2018, 6(4), 49-53. doi: 10.11648/j.ajche.20180604.12

    Copy | Download

    AMA Style

    Azita Saliman, Hamid Reza Aghabozorg, Sepideh Ketabi. Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes. Am J Chem Eng. 2018;6(4):49-53. doi: 10.11648/j.ajche.20180604.12

    Copy | Download

  • @article{10.11648/j.ajche.20180604.12,
      author = {Azita Saliman and Hamid Reza Aghabozorg and Sepideh Ketabi},
      title = {Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes},
      journal = {American Journal of Chemical Engineering},
      volume = {6},
      number = {4},
      pages = {49-53},
      doi = {10.11648/j.ajche.20180604.12},
      url = {https://doi.org/10.11648/j.ajche.20180604.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20180604.12},
      abstract = {In this research study for the firsttime zirconium doped vanadium oxide nanotubes (VONTs) were synthesized. Zr-doped VONTs were performed by using hydrothermal method. Zr-VONTs prepared 0.02 wt%. The structure and morphology of the nanotubes were investigated by x- ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In contrast to the undoped VONTs, the interlayer distance between oxide layers in the (V0.98Zr0.02 ) x ONTs increases owing to replacement of some V in nanotubes by Zr with a large ionic radius. The results showed that zirconium 0.02wt% doped VONTs complately and the doping Zr into VONTs leads to increasing interlayer distances.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes
    AU  - Azita Saliman
    AU  - Hamid Reza Aghabozorg
    AU  - Sepideh Ketabi
    Y1  - 2018/07/27
    PY  - 2018
    N1  - https://doi.org/10.11648/j.ajche.20180604.12
    DO  - 10.11648/j.ajche.20180604.12
    T2  - American Journal of Chemical Engineering
    JF  - American Journal of Chemical Engineering
    JO  - American Journal of Chemical Engineering
    SP  - 49
    EP  - 53
    PB  - Science Publishing Group
    SN  - 2330-8613
    UR  - https://doi.org/10.11648/j.ajche.20180604.12
    AB  - In this research study for the firsttime zirconium doped vanadium oxide nanotubes (VONTs) were synthesized. Zr-doped VONTs were performed by using hydrothermal method. Zr-VONTs prepared 0.02 wt%. The structure and morphology of the nanotubes were investigated by x- ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In contrast to the undoped VONTs, the interlayer distance between oxide layers in the (V0.98Zr0.02 ) x ONTs increases owing to replacement of some V in nanotubes by Zr with a large ionic radius. The results showed that zirconium 0.02wt% doped VONTs complately and the doping Zr into VONTs leads to increasing interlayer distances.
    VL  - 6
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

  • Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

  • Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran

  • Sections