In this research study for the firsttime zirconium doped vanadium oxide nanotubes (VONTs) were synthesized. Zr-doped VONTs were performed by using hydrothermal method. Zr-VONTs prepared 0.02 wt%. The structure and morphology of the nanotubes were investigated by x- ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In contrast to the undoped VONTs, the interlayer distance between oxide layers in the (V0.98Zr0.02 ) x ONTs increases owing to replacement of some V in nanotubes by Zr with a large ionic radius. The results showed that zirconium 0.02wt% doped VONTs complately and the doping Zr into VONTs leads to increasing interlayer distances.
Published in | American Journal of Chemical Engineering (Volume 6, Issue 4) |
DOI | 10.11648/j.ajche.20180604.12 |
Page(s) | 49-53 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Vanadium Oxide Nanotubes (VONTs), Zirconium (Zr), Hydrothermal, Doped
[1] | R. Rouhani, H. R. Aghabozorg, and M. A. Asad Ababdada, synthesis and characterization of Re-, MO-, and W- doped vanadium oxide nanotubes, taylor & francis Groups, LLC, 1018- 1021, 2011. |
[2] | R. Tenne, L, Margulis, M. Genut, G. modes, Nature 1992, 360, 444. |
[3] | Y. Feldman, E. wasserman, D. j. Srolouitz, R. Tenne, Science 1995, 267, 222. |
[4] | N. G. chopra, R. G. Luyken, K. cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, science 1995, 256, 966. |
[5] | H. Nakamura, Y. Matsui, L. Am. Chem, Sock. 1995, 117, 2651. |
[6] | P. Hoyer, Langmuir 1996, 12, 1411. |
[7] | M. E. Spah, P. Bitterli, R. Nesper, m. Muller, F. krumeich, H. U. Niessen, Angw Chem. Ent. Ed. 1998, 37, 1263; Angew. Chem. 1998, 110, 1339. |
[8] | Y. R. Hacahan, E. Grunbaum, R. Tenne, J. Sloan, J. L. Hutchison, nature 1998, 395, 337. |
[9] | D. H. Galvan, J. H. Kim, M. B. Maple, M. Avalos – Berja, E. Adem, Full erene Sci, Technol, 2000, 8, 143. |
[10] | A. L. Ivanovskii, Russ. chem. Rev. 2002, 71, 175. |
[11] | M. Brorson, T. W. Hansen, C. J. H. Jacobesn, J. Am. chem. Soc. 2002, 124, 11582. |
[12] | M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, H. U. Nissen, Angew. Chem., Int. Ed. 37 (1998) 1263. |
[13] | M. Niederberg, H. J. Muher, F. Krmeich, F. Bieri, D. Gunther, R. Nesper, Chem. Mater. 12 (2000) 1995. |
[14] | F. Bieri, F. Krumeich, H. J. Muher, R. Nesper, Helv. Chim. Acta 84 (2001) 3015. |
[15] | Grigoreva, A. V, Anikina, A. V, Tarasor, A. B, sudilin, E. A, knotko, A. V, Volkov, V. V, Dembo, K. A, Tretyakov, Y. D. micromere apology and structure of vanadium oxide nanotubes. Doklady chem, 2006, Ulo, 165-169. |
[16] | Li,. Zheng, L., zhang, K. F. Feng, X. Q, SU, Z. X. Ma, J. T Synthesis of Ag modified vanadium oxide nanotubes and their antibacterial properties. Mater, Res. Bull. 2008, 43, 2810 -2817. |
[17] | G. T. Chandrappa, No Steunous, S. Cassaignon, C. bauvais, J. Livage, Hydrothermal Synthesis of vanadium oxide nanotubes from v2 o5 gels, J of catalysis today 78 (2003) 85-89. |
[18] | Solsona B et al (2001) Vanadium oxide supported on mesoporous MCM-41 as selsctive catalysts in the oxidative dehydrogenation of alkanes. J Catal 203 (2):443-452. |
[19] | Muhr HJ, Krumeich FSchonholzer UP, Bieri F, Niederberger M, Gaukler LJ, Nesper R (2000) Adv Mater12:231. |
[20] | Zhang KF, Guo DJ, Liu X, Li, J, Li HL, Su ZX (2006) J Power sources 162: 1077. |
[21] | Spahr ME, Stoschitzki-Bitterli P, Nesper R, Haas O, Novak P (1999) JElectrochem Soc146:278064-767. |
[22] | Krumeich F, Muhr HJ, Niederberger M, Bieri F, Schnyder B Nesper R (1999) J Am chem Soc 121:8324. |
[23] | Ledoux MJ et al (2001) High – yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat conductive materials: β-Sic, Si3N4, and BN, J Catal 203 (2): 495-508. |
[24] | Minglan Yu, Xueqin Liu, QingSu, Gas sensing of vanadium oxide nanotubes (2012), J of applied surface science 9554-9558. |
[25] | J. Liu, X. Wang, Q, Peng, Y. Li, Sensors and Actuators B: Chemical 115 (2006) 481-487. |
[26] | J. Liu, X. Wang, Q. Peng. Y Liu, Advanced Materials 17 (2005) 765-767. |
[27] | C. Leroy, M. Achard, O. Babot, N. Steunou, P. Masse, J. Livage, L. Binet. N. B run, R. Backov, chemistry of Materials 19 (2007) 3988-3999. |
[28] | Y. Li, Z. Hung, S. Rong, Sens, Mater 18 (2008) 241-249. |
[29] | A. Gigorieva, A. Tarasv, E, Godillin, S. Badalyan, M. Rumyantseva, A. Gaskov, A. Bikner, Y. Tretyakov, Mendeleev communications 18 (2008) 6-7. |
[30] | M. Kanttcheva, Physical Chemistry Chemical Physics 2 (2000) 3-43-3048. |
[31] | Qing Su, Xueqin Liu, Applied Surface Scince, 258 (2012) 9554-9558. |
[32] | MartinE. Saleta, Javier currale, H. E. Troiani, S. R. Guevara, R. Sanchez, M. Malta, R. Torresi, in Flounce of Nidopin on vanadium oxide hexadecyl amine multiwall nanotube, science direct (2007) 333-336. |
[33] | li. F, wang, X, shao, C, Tan, R; liu, Y. W doped vanadium oxide nanotubes synthesis and characterization. Matter let, 2007, 61, 1328-1332. |
[34] | Mai, L. Q; chen, W; Xu, Q; peng, J. F, Zhu, Q. Y. Mo doped vanadium oxide nanotubes: microstructure and electrochemistry chem. Phys. Let 2003, 382, 307-312. |
[35] | Jiao, L. Yuan, H.; Wing, y.; Cao, J; Wang, y. Mg intercalation properties in Open – ended Vanadium oxide nanotubes Electro hem. Common. 2005, 7 (4), 431- 436. |
[36] | Li. Mai, wen chen, Q. XV, J. Feng pen. Q – yaoZhu, Mo doped vanadium oxide nanotubes: micro structure and electro chemistry, chemical physics letters 382 (2003) 307-317. |
[37] | Bicrif, Krumeich F, muh. HJ, Nesper R (2001) Heluchain Acta 84. 3015. |
[38] | L. Guo, J. zho, X. wang, x. xu, H. liu, and Y. li, structure and bioactivity of ziroconia, applied ceramic technology, 636- 641 (2009). |
[39] | Bouhedja L, Stenou N, Maquet J, Livage J (2001) J Solid State Chem162:315. |
[40] | J. cha, Y. J. Kim, T. J. Kim, chemo. mater. 13 (2001) 18. |
[41] | J. cho, Y. J. Kim, B. Park, J. Electro hem. Solid State 4 (2001) A159. |
[42] | Ehsan. kianfar. M. Baghernejad, Y. Rahimdashti, J of Biological forum7 (1):1671-1685 (2015). |
APA Style
Azita Saliman, Hamid Reza Aghabozorg, Sepideh Ketabi. (2018). Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes. American Journal of Chemical Engineering, 6(4), 49-53. https://doi.org/10.11648/j.ajche.20180604.12
ACS Style
Azita Saliman; Hamid Reza Aghabozorg; Sepideh Ketabi. Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes. Am. J. Chem. Eng. 2018, 6(4), 49-53. doi: 10.11648/j.ajche.20180604.12
AMA Style
Azita Saliman, Hamid Reza Aghabozorg, Sepideh Ketabi. Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes. Am J Chem Eng. 2018;6(4):49-53. doi: 10.11648/j.ajche.20180604.12
@article{10.11648/j.ajche.20180604.12, author = {Azita Saliman and Hamid Reza Aghabozorg and Sepideh Ketabi}, title = {Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes}, journal = {American Journal of Chemical Engineering}, volume = {6}, number = {4}, pages = {49-53}, doi = {10.11648/j.ajche.20180604.12}, url = {https://doi.org/10.11648/j.ajche.20180604.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20180604.12}, abstract = {In this research study for the firsttime zirconium doped vanadium oxide nanotubes (VONTs) were synthesized. Zr-doped VONTs were performed by using hydrothermal method. Zr-VONTs prepared 0.02 wt%. The structure and morphology of the nanotubes were investigated by x- ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In contrast to the undoped VONTs, the interlayer distance between oxide layers in the (V0.98Zr0.02 ) x ONTs increases owing to replacement of some V in nanotubes by Zr with a large ionic radius. The results showed that zirconium 0.02wt% doped VONTs complately and the doping Zr into VONTs leads to increasing interlayer distances.}, year = {2018} }
TY - JOUR T1 - Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes AU - Azita Saliman AU - Hamid Reza Aghabozorg AU - Sepideh Ketabi Y1 - 2018/07/27 PY - 2018 N1 - https://doi.org/10.11648/j.ajche.20180604.12 DO - 10.11648/j.ajche.20180604.12 T2 - American Journal of Chemical Engineering JF - American Journal of Chemical Engineering JO - American Journal of Chemical Engineering SP - 49 EP - 53 PB - Science Publishing Group SN - 2330-8613 UR - https://doi.org/10.11648/j.ajche.20180604.12 AB - In this research study for the firsttime zirconium doped vanadium oxide nanotubes (VONTs) were synthesized. Zr-doped VONTs were performed by using hydrothermal method. Zr-VONTs prepared 0.02 wt%. The structure and morphology of the nanotubes were investigated by x- ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In contrast to the undoped VONTs, the interlayer distance between oxide layers in the (V0.98Zr0.02 ) x ONTs increases owing to replacement of some V in nanotubes by Zr with a large ionic radius. The results showed that zirconium 0.02wt% doped VONTs complately and the doping Zr into VONTs leads to increasing interlayer distances. VL - 6 IS - 4 ER -