| Peer-Reviewed

Memory of Chiral Molecules Define Their Interactions and the Results of Resolution Processes

Received: 15 May 2018     Accepted: 10 August 2018     Published: 21 September 2018
Views:       Downloads:
Abstract

The preparation of pure enantiomers has an increasing demand both for academic and industrial (pharmaceutical) practice. This is not surprising, because the active ingredients of a main part of medicines (about 70-80%) are pure enantiomers. Several selective methods are known for preparation of pure enantiomers but the more economical and usual method is the resolution, when the pure enantiomers are obtained from diastereomeric salts formed due the reaction of the racemic compound and resolving agent in adequate conditions (solvent, temperature crystallization time). Since the first resolution effectuated by Pasteur the researchers have tried to explain what is happening during resolution, but this has not yet been fully accomplished, it is still a mystery. In this paper is described our proposal for resolution’s mechanism, based on systematization of our results and observations made during the resolution, taking into consideration the principal characteristics of enantiomeric mixtures, namely the eutectic composition and their helicity. We suppose that the enantiomers have a memory and they used it during the resolution processes, tending to form their stable symmetric conformation.

Published in American Journal of Chemical Engineering (Volume 6, Issue 4)
DOI 10.11648/j.ajche.20180604.15
Page(s) 65-71
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Resolution, Enantiomers, Diastereomers, Eutectic composition, Homo- and Heterochiral Associates, Helical Structure

References
[1] Toth, G., Fogassy, E., Acs, M., Toke, L., Láng, T. Racematspaltung von (±)-5-äthyl-1-(3,4-dimethoxyphenyl)-6,7-dimethoxy-4-methyl-5H-2,3-benzodiazepin und anomales chiroptisches verhalten der enantiomeren. J. Heterocycl. Chem. 20 (3), 709-713 (1983).
[2] Bosits, M. Resolution of Grandaxin by diastereomeric salt formation and investigation of purification methods of its enantiomeric. Thesis University of Technology and Economics, Budapest (2016).
[3] Jacques J, Wilen S. H, Collet A, Enantiomers, racemates and resolution. Wiley-Interf. NY (1881).
[4] Roozeboom H. W. B.: Löslichkeit und Schmelzpunkt als Kriterien für racemische Verbindungen, pseudoracemische Mischkrystalle und inaktive Konglomerate. Z. Phys. Chem. 28, 494 (1899).
[5] Girard, C., Kagan, H. B. Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. Angew. Chem. Int. Ed. 37, 2922–2359 (1998).
[6] Brunel, J. M., Lukas, T. O., Kagan, H. B. Nonlinear effects as `indicators' in the tuning of asymmetric catalysts. Tetrah.: Asymmetry 9, 1941-1946 (1998).
[7] Klussmann, M., Iwamura, H., Mathew, S. P., Wells, D. H., Pandya, U., Armstrong, A., Blackmond, D. G. Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441, 621–623 (2006).
[8] Kellog, R. M. The crystallization behavior of proline and its role in asymmetric organocatalysis. Angew. Chem. 46, 494-497 (2007).
[9] Balint J, Egri G, Kiss V, Gajary A, Juvancz Z, Fogassy E. Unusual phenomena during the resolution of 6-fluoro-2-methyl-1,2,3,4-tetrahydroquinoline (FTHQ): thermodynamic-kinetic control. Tetrah.: Asymmetry 12, 3435-3439 (2002).
[10] Pálovics, E., Schindler, J., Faigl, F., Fogassy, E. Physical separations: behavior of structurally similar molecules in the resolution processes. In Comprehensive Chirality, Carreira, E., Yamamoto, H., Eds., Vol. 8, pp 91-95 ISBN (print): 978-0-08-095167-6. (Elsevier Ltd., Oxford, 2012).
[11] Pálovics, E., Faigl, F., Fogassy, E. Separation of the Mixtures of Chiral Compounds by Crystallization. In Advances in Crystallization Processes, Mastai, Y., Ed., InTech, pp 1-37. ISBN 978-953-51-0581-7 (Rijeka, 2012).
[12] Szeleczky Zs., Semsey S., Bagi P., Pálovics E., Faigl F., Fogassy E. Selecting resolving agents in respect of their eutectic compositions. Chirality: the Pharmacological Biological and Chemical Consequences of Molecular Asymmetry 28(3), 230-234, (2016).
[13] Pálovics, E., Szeleczky, Zs., Fődi, B., Faigl, F., Fogassy, E. Prediction of the efficiency of diastereoisomer separation on the basis of the behaviour of enantiomeric mixtures. RSC Advances 4, 21254-21261 (2014).
[14] Pálovics, E., Szeleczky, Zs., Fogassy, E. Influence of helical structured supramolecular associates and that of eutectic composition on the distribution of enantiomeric and diastereomeric mixtures between phases. Chem. Bull. "POLITEHNICA" Univ. (Timisoara) 61(75), 40-43 (2016).
[15] Marthi, K., Larsen, S., Ács, M., Jászay, Zs., Fogassy, E. Enantiomer associations in the crystal structures of racemic and (2S, 3R)-(-)-3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one. Acta. Chem. Scand. 50, 906-913 (1996).
[16] Marthi, K., Larsen, S., Ács, M., Fogassy, E. Enantiomer assosiations in the crystal structures of racemic and (2S,3S)-(+)-3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one. J. M. Struct. 374, 347-355 (1996)
[17] Viedma C., McBride J. M., Kahr B., Cintas P. Enantiomer-specific oriented attachment: formation of macroscopic homochiral crystal aggregates from a racemic system. Angew. Chem. Int. Ed. 52 m 10541-10545 (2013).
[18] Szeleczky Zs., Bagi P., Pálovics E., Fogassy E. The effect of the eutectic composition on the outcome of kinetically and thermodinamically controlled resolutios that are based on the formation of diastereomers. Tetrah.: Asymmetry 26, 377-384, (2015).
[19] Koshima, H., Matsuura, T. Chiral crystallization of achiral organic compounds – generation of chirality without chiral environment. J. Synth. Org. Chem. 56, 268H. (1998).
[20] Kahr, B., Shtukenberg, A., Gunn, A., Carter, J. D., Rohl, L. A. Controlling mesoscale crystal helicity with additives, again Cryst. Grown and Design 11, 2070-2073 (2011).
[21] Soloshonok, V. A. Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew. Chem. Int. Ed. 45, 766–769 (2006).
[22] Pavlov, V., Pavlova, T. N. Paradoxes of symmetry: homochirality, cryptochiral reactions, chiral field, memory, and induction, chiral and racemic environment. Curr. Org. Chem. 21, 872-888 (2017).
[23] Oaki, Y., Imai, H. Stereospecific morphogenesis of aspartic acid helical crystals through molecular recognition. Langmuir 23, 5466-5470 (2007).
[24] Kobayashi, Y., Kodama, K., Saigo, K. Supramolecular architecture consisting of an enantiopure amine and an achiral carboxylic acid: application to the enantioseparation of racemic alcohols. Org Lett. 6, (17), 2941-2944 (2004).
[25] Kobayashi, Y., Kodama, K., Saigo,K. Enantioselective inclusion of chiral alkyl aryl sulfoxides in a supramolecular helical channel consisting of an enantiopure 1,2-amino alcohol and an achiral carboxylic acid. Tetrah.: Asymmetry 19, 295-301 (2008).
[26] Weissbuch, I., Leiserowitz, L., Lahav, M. Stochastic “mirror symmetry breaking” via self-assembly reactivity and amplification of chirality: relevance to abiotic conditions. Top. Curr. Chem. 259, 123-165 (2005).
[27] Tamura, R., Iwama, S., Gonnade, R. G. Control of polymorphic transition inducing preferential enrichment. Cryst. Eng. Comm, 13, 5269-5280 (2011).
Cite This Article
  • APA Style

    Emese Pálovics, Elemér Fogassy. (2018). Memory of Chiral Molecules Define Their Interactions and the Results of Resolution Processes. American Journal of Chemical Engineering, 6(4), 65-71. https://doi.org/10.11648/j.ajche.20180604.15

    Copy | Download

    ACS Style

    Emese Pálovics; Elemér Fogassy. Memory of Chiral Molecules Define Their Interactions and the Results of Resolution Processes. Am. J. Chem. Eng. 2018, 6(4), 65-71. doi: 10.11648/j.ajche.20180604.15

    Copy | Download

    AMA Style

    Emese Pálovics, Elemér Fogassy. Memory of Chiral Molecules Define Their Interactions and the Results of Resolution Processes. Am J Chem Eng. 2018;6(4):65-71. doi: 10.11648/j.ajche.20180604.15

    Copy | Download

  • @article{10.11648/j.ajche.20180604.15,
      author = {Emese Pálovics and Elemér Fogassy},
      title = {Memory of Chiral Molecules Define Their Interactions and the Results of Resolution Processes},
      journal = {American Journal of Chemical Engineering},
      volume = {6},
      number = {4},
      pages = {65-71},
      doi = {10.11648/j.ajche.20180604.15},
      url = {https://doi.org/10.11648/j.ajche.20180604.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20180604.15},
      abstract = {The preparation of pure enantiomers has an increasing demand both for academic and industrial (pharmaceutical) practice. This is not surprising, because the active ingredients of a main part of medicines (about 70-80%) are pure enantiomers. Several selective methods are known for preparation of pure enantiomers but the more economical and usual method is the resolution, when the pure enantiomers are obtained from diastereomeric salts formed due the reaction of the racemic compound and resolving agent in adequate conditions (solvent, temperature crystallization time). Since the first resolution effectuated by Pasteur the researchers have tried to explain what is happening during resolution, but this has not yet been fully accomplished, it is still a mystery. In this paper is described our proposal for resolution’s mechanism, based on systematization of our results and observations made during the resolution, taking into consideration the principal characteristics of enantiomeric mixtures, namely the eutectic composition and their helicity. We suppose that the enantiomers have a memory and they used it during the resolution processes, tending to form their stable symmetric conformation.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Memory of Chiral Molecules Define Their Interactions and the Results of Resolution Processes
    AU  - Emese Pálovics
    AU  - Elemér Fogassy
    Y1  - 2018/09/21
    PY  - 2018
    N1  - https://doi.org/10.11648/j.ajche.20180604.15
    DO  - 10.11648/j.ajche.20180604.15
    T2  - American Journal of Chemical Engineering
    JF  - American Journal of Chemical Engineering
    JO  - American Journal of Chemical Engineering
    SP  - 65
    EP  - 71
    PB  - Science Publishing Group
    SN  - 2330-8613
    UR  - https://doi.org/10.11648/j.ajche.20180604.15
    AB  - The preparation of pure enantiomers has an increasing demand both for academic and industrial (pharmaceutical) practice. This is not surprising, because the active ingredients of a main part of medicines (about 70-80%) are pure enantiomers. Several selective methods are known for preparation of pure enantiomers but the more economical and usual method is the resolution, when the pure enantiomers are obtained from diastereomeric salts formed due the reaction of the racemic compound and resolving agent in adequate conditions (solvent, temperature crystallization time). Since the first resolution effectuated by Pasteur the researchers have tried to explain what is happening during resolution, but this has not yet been fully accomplished, it is still a mystery. In this paper is described our proposal for resolution’s mechanism, based on systematization of our results and observations made during the resolution, taking into consideration the principal characteristics of enantiomeric mixtures, namely the eutectic composition and their helicity. We suppose that the enantiomers have a memory and they used it during the resolution processes, tending to form their stable symmetric conformation.
    VL  - 6
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary

  • Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary

  • Sections