| Peer-Reviewed

Nesting System and Foraging Behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 (Hymenoptera: Formicidae: Myrmicinae) in Douala (Littoral-Cameroon)

Received: 9 May 2022     Accepted: 23 May 2022     Published: 31 May 2022
Views:       Downloads:
Abstract

Nesting system, diet behaviour, activity rhythm and predatory behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 were studied in the field situation in suburbs of Douala (Littoral-Cameroon). Polycalic and polydomous nesting system were recorded. Large independent nests were positioned on the bark surface of trunks (50.8%) or the underside bark of the fork of large branches (49.2%) of cultivated or wild trees (45.8% and 54.2% respectively). Workers collected nectar from 18 plants from eight families: Asteraceae, Costaceae, Ehretiaceae, Euphorbiaceae, Mimosaceae Phyllantaceae, Poaceae and Rutaceae. They collected honeydew from Aleyrodidae and four Hemipteran families from Sternorrhyncha suborder: Aphididae, Coccidae Pseudococcidae and Stictococcidae. These Hemipterans proliferated on 11 plant families: Anacardiaceae, Annonaceae, Apocynaceae, Asteraceae, Costaceae, Euphorbiaceae, Myrtaceae, Poaceae, Rutaceae, Solanaceae and Urticaceae. Solid particles brought back to the nest were mostly from plants (72.5%) and weakly preys (27.5%). Sugary liquids were preferred over fats, carbohydrate sources, and even preys. Products were collected continuously (day and night) in the foliage of the host plant and neighbouring plants, shrubs and grasses. Workers occasionally brought back to the nest dead or dying larvae of grasshoppers and small particles of other arthropods (ants, flies, caterpillars). The sequence of behavioural acts recorded during the capture of larvae of Ruspolia differens (Orthoptera: Tettigoniidae) and adults of Zonocerus variegatus (Orthoptera: Pyrgomorphidae) (3 to 5 mm and 15 to 20 mm long respectively) were compared. The main sequence presented succession of seven acts: (1) detection by contact; (2) antennation; (3) attack-seizure; (4) short-range recruitment of nestmates in the vicinity; (5) spread-eagling of preys; (6) cutting up the prey on the spot; and (7) transport of pieces or whole prey to the nest. The stinging phase was not recorded. The duration of the capture of small prey (66 min. to 1 hr. 25 sec.; mean ± se: 1 hr. 57 min. 25 sec. ± 12 min. 2 sec.; 10 essays) was lower than that of large preys (2 hrs. 33 sec. to 4 hrs. 16 sec.; 2 hrs. 58 min. 32 sec. ± 17 min. 15 sec.; 10 essays; Mann-Withney test: T = 72.00; p = 0.014). The long duration of captures suggested that spread-eagling and cutting up preys on the spot lasted a long time. Cr. stadelmanni is a poor predator indirectly harmful for wild or cultivated trees since their predatory aptitude is low compared to aggressive dominant arboreal-nesting ants and is counterbalanced by the propensity to honeydew.

Published in American Journal of Entomology (Volume 6, Issue 2)
DOI 10.11648/j.aje.20220602.13
Page(s) 27-42
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Dominant Arboreal Ants, Crematogaster (Nematocrema) stadelmanni, Diet Behaviour, Predatory Behaviour, Cameroon

References
[1] Dejean, A., Corbara, B., Orivel, J. & Leponce, M. (2007). Rainforest canopy ants: the implications of territoriality and predatory behavior. Functional Ecosystems and Communities, 1: 105-120.
[2] Blüthgen, N. & Stork, N. E. (2007). Ant mosaics in a tropical rainforest in Australia and elsewhere: A critical review. Austral Ecol., 32: 93-104.
[3] Taylor, B. (2019). The ants of (sub-Saharan) Africa (Hymenoptera: Formicidae). Profusely illustrated with catalogue notes on all ant species described from sub-saharan Africa. Revised 2015 Latest date of revision November 2015. http://antsofafrica.org/. Accessed on 3th January 2022.
[4] Delage-Darchen, B. (1973). Evolution de l’aile chez les fourmis Crematogaster (Myrmicinae) d’Afrique. Insectes Soc., 20 (3): 221-242.
[5] AntWeb (2022). Species: Crematogaster (Crematogaster) stadelmanni Mayr, 1895. Version 8.75.2. California Academy of Science. https://www.antweb.org. Accessed on 10th April 2022.
[6] Delage-Darchen, B. (1972). Le polymorphisme larvaire chez les fourmis Nematocrema d’Afrique. Insectes Soc., 19 (3): 259-278.
[7] Delage-Darchen, B. (1978). Les stades larvaires chez Crematogaster (Sphaerocrema) striatula, fourmi forestière d’Afrique [Hym., Formicidae]. Ann. Soc. Entomol. Fr. (N. S.), 14 (8): 293-299.
[8] Blaimer, B. B. (2012). A subgeneric revision of Crematogaster and discussion of regional species-groups (Hymenoptera: Formicidae). Zootaxa, 3482: 47- 67.
[9] Crewe R. M., Blum M. S. & Colingwood, C. A. (1972). Comparative Analysis of Alarm Pheromones in the Ant Genus Crematogaster. Comp. Biochem. Physiol., 43B: 703-716.
[10] Kenne, M., Fénéron, R., Djiéto-Lordon, C., Malherbe, M.-C., Tindo, M., Ngnegueu, P. R. & Dejean, A. (2009). Nesting and foraging habits in the arboreal ant Atopomyrmex mocquerysi ANDRÉ, 1889 (Hymenoptera: Formicidae: Myrmicinae). Myrmecol. News, 12: 109-115.
[11] Richard, F.-J., Fabre, A. & Dejean, A. (2001). Predatory behaviour in dominant arboreal ant species: the case of Crematogaster sp. (Hymenoptera: Formicidae). J. Insect Behav., 14: 271-282.
[12] Rifflet A., Tene, N., Orivel, J., Treilhou, M., Dejean, A. & Vetillard, A. 2011. Paralyzing Action from a Distance in an Arboreal African Ant Species. PLoS ONE, 6 (12): e28571.
[13] Tadu, Z., Messop-Youbi, E. B., Fomekong Lontchi, J., Alene, D. C. & Djieto-Lordon, C. (2021). Prey Fragmentation and Transport in Six Tropical Arboreal Ant Species. Computational Biology and Bioinformatics, 9 (1): 21-30.
[14] Djiéto-Lordon, C., Richard, F.-J., Owona, C., Gibernau, M., Orivel, J. & Dejean, A. (2001). The predatory behaviour of the dominant arboreal ant species Tetramorium aculeatum (Hymenoptera: Formicidae). Sociobiology, 38: 765-775.
[15] Van Mele, P., Vayssieres, J., Van Tellingen, E. & Vrolijks, J. (2007). Effects of an African weaver ant, Oecophylla longinoda, in controlling mango fruit flies (Diptera: Tephritidae) in Benin. J. Econ. Entomol., 100: 695-7 01.
[16] Van Mele, P. 2008. A historical review of research on the weaver ant Oecophylla in biological control. Agric. For. Entomol., 10, 13-22.
[17] Vayssières, J.-F., Sinzogan, A., Adandonon, A., Van Mele, P. & Korie, S. (2013). Ovipositional behaviour of two mango fruit fly species (Diptera: Tephritidae) in relation to Oecophylla cues (Hymenoptera: Formicidae) as compared to natural conditions without ant cues. Int. J. Biol. Chem. Sci., 7: 447-456.
[18] Diamé L., Rey J.-Y., Vayssières J.-F., Grechi I., Chailleux A. & Diarra, K. 2018. Ants: Major Functional Elements in Fruit Agro-Ecosystems and Biological Control Agents. Sustainability, 10 (23): 1-18.
[19] Longino, J. T. (2003). The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa, 151 (1): 1-150.
[20] Dejean, A., McKey, D., Gibernau, M. & Belin-Depoux, M. (2000a). The arboreal ant mosaic in a Cameroonian rainforest (Hymenoptera: Formicidae). Sociobiology, 35: 403-423.
[21] Dejean, A., Djiéto-Lordon, C., Céréghino, R. & Leponce, M. (2008). Ontogenetic succession and the ant mosaic: an empir-ical approach using pioneer trees. Basic. Appl. Ecol., 9: 316-323.
[22] Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift, 15 (3): 259-263.
[23] Climate-Data.org (2019). Climat Douala (Cameroun). https://fr.climate-data.org/afrique/cameroun/ littoral/douala-890444/. Assessed 10th September 2020.
[24] Abdalla, W. E., Guma'a, A. G. N., El Ghazali, G. E. B. & Khalid, H. E. (2016). An Updated Species Check-list for the Genus Cassia L. sensu lato in the Sudan. J. Nat. Res. Environ. Studies, 4 (2): 1-12.
[25] Apetorgbor, M. M. (2007). Albizia zygia (DC.) J. F. Macbr. In: Louppe, D., Oteng-Amoako, A. A. & Brink, M. (eds.). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. https://uses.plantnet-project.org/fr/Albizia_zygia_(PROTA). Accessed on 27th April 2022.
[26] Lemmens, R. H. M. J. (2007). Albizia adianthifolia (Schumach.) W. Wight. In: Louppe, D., Oteng-Amoako, A. A. & Brink, M. (eds.). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. https://uses.plantnet-project.org/en/Albizia_adianthifolia_(PROTA). Accessed on 27th April 2022.
[27] MNHN & OFB (2022). Plumeria alba L., 1753. National inventory of natural heritage/Inventaire national du patrimoine naturel (INPN), https://inpn.mnhn.fr. https://inpn.mnhn.fr/espece/cd_nom/630456/tab/fiche. Accessed on 27th April 2022.
[28] Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. (2009). Agroforestree Database: a tree reference and selection guide version 4.0. 5pp. http://apps.worldagroforestry.org/treedb/AFTPDFS/Persea_americana.PDF
[29] Pinto, A. C. de Q., Cordeiro, M. C. R., de Andrade, S. R. M., Ferreira, F. R., Filgueiras, H. A. de C., Alves, R. E. & Kinpara, D. I. (2005). Annona species. International Centre for Underutilised Crops, University of Southampton, Southampton, SO17 1BJ, UK. Pp. 268.
[30] GBIF (2021a). Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei accessed via GBIF.org. Accessed via GBIF.org on 2th May 2022.
[31] GBIF (2021b). Bridelia micrantha (Hochst.) Baill. GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei. Accessed via GBIF.org on 2th May 2022.
[32] GBIF 2021c. Terminalia glaucescens Planch. ex Benth. in GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei. Accessed via GBIF.org on 2th May 2022.
[33] Maroyi, A. (2008). Syzygium guineense (Willd.) DC. In: Louppe, D., Oteng-Amoako, A. A. & Brink, M. (eds.). PROTA4U Record Display. PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. https://www.prota4u.org/database/protav8.asp?g=psk&p=Syzygium%20guineense. Accessed on 2nd May 2022.
[34] Beentje, H. J. & Mbago, F. M. (2007). A guide to the fig trees of wertern Tanzania with special emphasis on Gombe and Mahale National Parks. J. East Afr. Nat. Hist., 96 (1): 1-26.
[35] Okafor, J. C. (2004). Myrianthus arboreus P. Beauv. In: Grubben, G. J. H. & Denton, O. A. (eds.). from PROTA4U Record display. PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. http://www.prota4u.org/search.asp. Accessed on 2nd May 2022.
[36] Todou, G. & Meikeu Kamdem, M. G., (2011). Musanga cecropioides R. Br. ex Tedlie. In: Lemmens, R. H. M. J., Louppe, D. & Oteng-Amoako, A. A. (eds.). PROTA4U Record Display. PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. http://www.prota4u.org/search.asp. Accessed 2nd May 2022.
[37] CABI (2022). Cecropia peltata (trumpet tree). Invasive Species Compendium. Detailed coverage of invasive species threatening livelihoods and the environment worldwide. https://www.cabi.org/isc/datasheet/11955. Accessed on 2th May 2022.
[38] Massa, B. 2015. Taxonomy and distribution of some katydids (Orthoptera Tettigoniidae) from tropical Africa. ZooKeys, 524: 17-44.
[39] Felix, R. P. W. H. & Massa, B. (2016). Orthoptera (Insecta: Tettigonioidea, Pyrgomorphoidea, Acridoidea) of Kafa Biosphere Reserve, Bale Mountains National Park and other areas of conservation interest in Ethiopia. Zootaxa, 4189 (1): 1-59.
[40] Dibong, S. D., Din, N., Priso, R. J., Taffouo, V. D., Fankem, H., Salle, G. & Amougou Akoa (2008). Parasitism of host trees by the Loranthaceae in the region of Douala (Cameroon). Afr. J. Environ. Sci. Tech., 2 (11): 371-378.
[41] Dibong, S. D., Engone Obiang, N. L., Din, N., Priso, R. J., Taffouo, V. D., Fankem H., Salle, G. & Amougou Akoa (2009). Les Loranthaceae: un atout pour l’essor de la pharmacopée traditionnelle au Cameroun. Int. J. Biol. Chem. Sci., 3 (4): 746-754.
[42] Soro, K., Mangara, A., Kouame, N. M. T., Soro D., Gnahoua, G. M. & N’Da, A. A. A (2016). Parasitism of Mistletoes and Cultural association in Cocoa Cultivation at the West Center of Côte d’Ivoire. Agr. Afr., 28 (1): 1-8.
[43] Kenne, M., Djiéto-Lordon, C., Orivel, J., Mony, R., Fabre, A. & Dejean, A. (2003). Influence of insecticide treatments on ant-hemiptera associations in tropical plantations. J. Econ. Entomol., 96: 251-258.
[44] Debout, G., Schatz, B., Elias, M. & Mckey, D. (2007). Polydomy in ants: what we know, what we think we know, and what remains to be done. Biol. J. Linn. Soc., 90: 319-348.
[45] Robinson, E. J. H. (2014). Polydomy: the organisation and adaptive function of complex nest systems in ants. Curr. Opin. Ins. Sci., 5: 37-43.
[46] Delabie, J. H. C. (2001). Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotrop. Entomol., 30: 501-516.
[47] Steinkraus, D. C. (2006). Factors affecting transmission of fungal pathogens of aphids. J. Invertebr. Pathol., 92 (3): 125-131.
[48] CABI (2006). Pests and diseases of coffee in eastern Africa: a technical and advisory manual. Compiled & edited by Mike Rutherford and Noah Phiri. Crop Protection Programme (CPP) of the UK Department for International Development (DFID), CAB International, Wallingford, UK. Pp. 69.
[49] Gnankine, O., Mouton, L., Henri, H., Terraz, G., Houndeté, T., Martin, T., Vavre, F. & Fleury, F. (2013). Distribution of Bemisia tabaci (Homoptera: Aleyrodidae) biotypes and their associated symbiotic bacteria on host plants in West Africa. Insect Conserv. Divers., 6 (3): 411- 421.
[50] Yorganci, S. & Açıkgöz, S. (2019). Transmission of fig leaf mottle-associated virus 1 by Ceroplastes rusci. J. Plant Pathol., 101: 1199-1201.
[51] Dejean, A., Bourgoin, T. & Orivel, J. (2000b). Ant defense of Euphyonarthex phyllostoma (Homoptera: Tettigometridae) during trophobiotic associations. Biotropica, 32: 112-119.
[52] Dejean, A., Gibernau, M. & Bourgoin, T. (2000c). A new case of trophobiosis between ants and heteroptera. C. R. Acad. Sci., Paris, 323: 447-454.
[53] Dejean, A., Orivel, J., Durand, J.-L., Ngnegueu, P. R., Bourgoin, T. & Gibernau, M. (2000d). Interference between ant species distribution in different habitats and the density of a maize pest. Sociobiology, 35: 175-189.
[54] Van Mele, P. (2008). A historical review of research on the weaver ant Oecophylla in biological control. Agric. For. Entomol., 10, 13-22.
[55] Offenberg, J. (2015). Ants as tools in sustainable agriculture. J. Appl. Ecol., 52: 1197-1205.
[56] Vayssieres, J.-F., Ouagoussounon, I., Adandonon, A., Sinzogan, A., Korie, S., Todjihounde, R., Alassane, S., Wargui R., Anato F. & Goergen, G. (2015). Seasonal pattern in food gathering of the weaver ant Oecophylla longinoda (Hymenoptera: Formicidae) in mango orchards in Benin. Biocontrol Sci. Technol., 25: 1395-1387.
[57] Vayssieres, J.-F., Sinzogan, A., Korie, S., Adandonon, A. & Worou, S. (2011). Field observational studies on circadian activity pattern of Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae) in relation to abiotic factors and mango cultivars. Int. J. Biol. Chem. Sci., 5 (2): 790-802.
[58] Wetterer, J. K. 2017. Geographic distribution of the weaver ant Oecophylla smaragdina. Asian Myrmecology, 9: e009004. doi: 10.20362/am.009004.
[59] Thurman, J. H., Northfield, T. D. & Snyder, W. E. 2019. Weaver Ants Provide Ecosystem Services to Tropical Tree Crops. Front. Ecol. Evol., 7: 120. doi: 10.3389/fevo.2019.00120.
[60] Orivel, J., Souchal, A., Cerdan, P. & Dejean, A. 2000. Prey capture behavior of the arboreal ponerine ant Pachycondyla goeldii (Hymenoptera: Formicidae). Sociobiology, 35: 131-140.
[61] Dejean, A., Lenoir, A. & Godzinska, E. J. (1994). The Hunting Behavior of Polyrhachis laboriosa, a Non-Dominant Arboreal Ant of the African Equatorial Forest (Hymenoptera: Formicidae, Formicinae). Sociobiology, 23 (3): 293-313.
[62] Kenne, M., Mony, R., Tindo, M., Kamaha Njaleu, L. C., Orivel, J. & Dejean, A. (2005). The predatory behaviour of a tramp ant species in its native range. C. R. Biologies, 328: 1025-1030.
Cite This Article
  • APA Style

    Mohamed Basile Moumite, Patrick Steve Tuekam-Kowa, Rameline Prudence Guetsop-Ngouadjie, Sedrick Junior Tsekane, Boris Fouelifack-Nintidem, et al. (2022). Nesting System and Foraging Behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 (Hymenoptera: Formicidae: Myrmicinae) in Douala (Littoral-Cameroon). American Journal of Entomology, 6(2), 27-42. https://doi.org/10.11648/j.aje.20220602.13

    Copy | Download

    ACS Style

    Mohamed Basile Moumite; Patrick Steve Tuekam-Kowa; Rameline Prudence Guetsop-Ngouadjie; Sedrick Junior Tsekane; Boris Fouelifack-Nintidem, et al. Nesting System and Foraging Behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 (Hymenoptera: Formicidae: Myrmicinae) in Douala (Littoral-Cameroon). Am. J. Entomol. 2022, 6(2), 27-42. doi: 10.11648/j.aje.20220602.13

    Copy | Download

    AMA Style

    Mohamed Basile Moumite, Patrick Steve Tuekam-Kowa, Rameline Prudence Guetsop-Ngouadjie, Sedrick Junior Tsekane, Boris Fouelifack-Nintidem, et al. Nesting System and Foraging Behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 (Hymenoptera: Formicidae: Myrmicinae) in Douala (Littoral-Cameroon). Am J Entomol. 2022;6(2):27-42. doi: 10.11648/j.aje.20220602.13

    Copy | Download

  • @article{10.11648/j.aje.20220602.13,
      author = {Mohamed Basile Moumite and Patrick Steve Tuekam-Kowa and Rameline Prudence Guetsop-Ngouadjie and Sedrick Junior Tsekane and Boris Fouelifack-Nintidem and Miric Biawa Kagmegni and Babelle Ngamaleu-Siewe and Edith Laure Kenne and Romaine Magloire Fantio and Abel Kayoum Yomon and Jeanne Aggripine Yetchom-Fondjo and Armand Didier Foguieng-Saha and Paul Serge Mbenoun Masse and Martin Kenne and Abraham Fomena},
      title = {Nesting System and Foraging Behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 (Hymenoptera: Formicidae: Myrmicinae) in Douala (Littoral-Cameroon)},
      journal = {American Journal of Entomology},
      volume = {6},
      number = {2},
      pages = {27-42},
      doi = {10.11648/j.aje.20220602.13},
      url = {https://doi.org/10.11648/j.aje.20220602.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aje.20220602.13},
      abstract = {Nesting system, diet behaviour, activity rhythm and predatory behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 were studied in the field situation in suburbs of Douala (Littoral-Cameroon). Polycalic and polydomous nesting system were recorded. Large independent nests were positioned on the bark surface of trunks (50.8%) or the underside bark of the fork of large branches (49.2%) of cultivated or wild trees (45.8% and 54.2% respectively). Workers collected nectar from 18 plants from eight families: Asteraceae, Costaceae, Ehretiaceae, Euphorbiaceae, Mimosaceae Phyllantaceae, Poaceae and Rutaceae. They collected honeydew from Aleyrodidae and four Hemipteran families from Sternorrhyncha suborder: Aphididae, Coccidae Pseudococcidae and Stictococcidae. These Hemipterans proliferated on 11 plant families: Anacardiaceae, Annonaceae, Apocynaceae, Asteraceae, Costaceae, Euphorbiaceae, Myrtaceae, Poaceae, Rutaceae, Solanaceae and Urticaceae. Solid particles brought back to the nest were mostly from plants (72.5%) and weakly preys (27.5%). Sugary liquids were preferred over fats, carbohydrate sources, and even preys. Products were collected continuously (day and night) in the foliage of the host plant and neighbouring plants, shrubs and grasses. Workers occasionally brought back to the nest dead or dying larvae of grasshoppers and small particles of other arthropods (ants, flies, caterpillars). The sequence of behavioural acts recorded during the capture of larvae of Ruspolia differens (Orthoptera: Tettigoniidae) and adults of Zonocerus variegatus (Orthoptera: Pyrgomorphidae) (3 to 5 mm and 15 to 20 mm long respectively) were compared. The main sequence presented succession of seven acts: (1) detection by contact; (2) antennation; (3) attack-seizure; (4) short-range recruitment of nestmates in the vicinity; (5) spread-eagling of preys; (6) cutting up the prey on the spot; and (7) transport of pieces or whole prey to the nest. The stinging phase was not recorded. The duration of the capture of small prey (66 min. to 1 hr. 25 sec.; mean ± se: 1 hr. 57 min. 25 sec. ± 12 min. 2 sec.; 10 essays) was lower than that of large preys (2 hrs. 33 sec. to 4 hrs. 16 sec.; 2 hrs. 58 min. 32 sec. ± 17 min. 15 sec.; 10 essays; Mann-Withney test: T = 72.00; p = 0.014). The long duration of captures suggested that spread-eagling and cutting up preys on the spot lasted a long time. Cr. stadelmanni is a poor predator indirectly harmful for wild or cultivated trees since their predatory aptitude is low compared to aggressive dominant arboreal-nesting ants and is counterbalanced by the propensity to honeydew.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Nesting System and Foraging Behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 (Hymenoptera: Formicidae: Myrmicinae) in Douala (Littoral-Cameroon)
    AU  - Mohamed Basile Moumite
    AU  - Patrick Steve Tuekam-Kowa
    AU  - Rameline Prudence Guetsop-Ngouadjie
    AU  - Sedrick Junior Tsekane
    AU  - Boris Fouelifack-Nintidem
    AU  - Miric Biawa Kagmegni
    AU  - Babelle Ngamaleu-Siewe
    AU  - Edith Laure Kenne
    AU  - Romaine Magloire Fantio
    AU  - Abel Kayoum Yomon
    AU  - Jeanne Aggripine Yetchom-Fondjo
    AU  - Armand Didier Foguieng-Saha
    AU  - Paul Serge Mbenoun Masse
    AU  - Martin Kenne
    AU  - Abraham Fomena
    Y1  - 2022/05/31
    PY  - 2022
    N1  - https://doi.org/10.11648/j.aje.20220602.13
    DO  - 10.11648/j.aje.20220602.13
    T2  - American Journal of Entomology
    JF  - American Journal of Entomology
    JO  - American Journal of Entomology
    SP  - 27
    EP  - 42
    PB  - Science Publishing Group
    SN  - 2640-0537
    UR  - https://doi.org/10.11648/j.aje.20220602.13
    AB  - Nesting system, diet behaviour, activity rhythm and predatory behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 were studied in the field situation in suburbs of Douala (Littoral-Cameroon). Polycalic and polydomous nesting system were recorded. Large independent nests were positioned on the bark surface of trunks (50.8%) or the underside bark of the fork of large branches (49.2%) of cultivated or wild trees (45.8% and 54.2% respectively). Workers collected nectar from 18 plants from eight families: Asteraceae, Costaceae, Ehretiaceae, Euphorbiaceae, Mimosaceae Phyllantaceae, Poaceae and Rutaceae. They collected honeydew from Aleyrodidae and four Hemipteran families from Sternorrhyncha suborder: Aphididae, Coccidae Pseudococcidae and Stictococcidae. These Hemipterans proliferated on 11 plant families: Anacardiaceae, Annonaceae, Apocynaceae, Asteraceae, Costaceae, Euphorbiaceae, Myrtaceae, Poaceae, Rutaceae, Solanaceae and Urticaceae. Solid particles brought back to the nest were mostly from plants (72.5%) and weakly preys (27.5%). Sugary liquids were preferred over fats, carbohydrate sources, and even preys. Products were collected continuously (day and night) in the foliage of the host plant and neighbouring plants, shrubs and grasses. Workers occasionally brought back to the nest dead or dying larvae of grasshoppers and small particles of other arthropods (ants, flies, caterpillars). The sequence of behavioural acts recorded during the capture of larvae of Ruspolia differens (Orthoptera: Tettigoniidae) and adults of Zonocerus variegatus (Orthoptera: Pyrgomorphidae) (3 to 5 mm and 15 to 20 mm long respectively) were compared. The main sequence presented succession of seven acts: (1) detection by contact; (2) antennation; (3) attack-seizure; (4) short-range recruitment of nestmates in the vicinity; (5) spread-eagling of preys; (6) cutting up the prey on the spot; and (7) transport of pieces or whole prey to the nest. The stinging phase was not recorded. The duration of the capture of small prey (66 min. to 1 hr. 25 sec.; mean ± se: 1 hr. 57 min. 25 sec. ± 12 min. 2 sec.; 10 essays) was lower than that of large preys (2 hrs. 33 sec. to 4 hrs. 16 sec.; 2 hrs. 58 min. 32 sec. ± 17 min. 15 sec.; 10 essays; Mann-Withney test: T = 72.00; p = 0.014). The long duration of captures suggested that spread-eagling and cutting up preys on the spot lasted a long time. Cr. stadelmanni is a poor predator indirectly harmful for wild or cultivated trees since their predatory aptitude is low compared to aggressive dominant arboreal-nesting ants and is counterbalanced by the propensity to honeydew.
    VL  - 6
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Laboratory of Zoology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon

  • Department of Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Laboratory of Zoology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon

  • Sections