Ascorbic acid, a water-soluble vitamin, is the most common electroactive biological compound found in most biological species. The electrochemical oxidation of vitamin C was investigated at GCE and Pt electrodes in various aqueous solutions in the pH range of 1 to 5 (0.1 M KCl as a supporting electrolyte) by CV and DPV. Experimental conditions, for CV: Scan rate of 50 mV/s, Initial potential -100 mV and Final Potential 1000 mV, for DPV: Scan Rate 50mV/s, Pulse amplitude 50mV,Pulse period 125 ms, Initial potential -100mV and Final Potential 1000 mV. For cyclic voltammetry, Regression equation of y=23.4611X + 13.2489 for GCE and y=5.19714X + 13.7071 Pt; LOD of 0.0035294 mM for GCE and 0.0176 mM for Pt; LOQ of 0.025519 mM for GCE and 0.085066 mMPt; R.S.D of % 2.76% for GCE and 4.42% for Pt. And for DPV Regression equation, y = 1.201X + 0.530393 for GCE andy = 0.0521393X + 0.506857 for Pt, R.S.D % 0.391% for GCE and 4.969% for Pt, LOD 0.12412 mM for GCE and 0.22497 mM for Pt and LOQ 0.4137 mM for GCEand 0.7499 mM for Pt. The oxidation peak potential of ascorbic acid were 270 mV and 370 mV for GCE in CV and DPV respectively but for Pt electrode 490 mV for CV and 370 mV for DPV (versus Ag/AgCl reference electrode). The influence of the operational parameters like scan rate, pulse amplitude, pulse period, concentration and pH on the analytical signal was investigated. The method developed by standard was applied to ascorbic acid assessment in liver and tomato samples. The results of ascorbic acid assessment by DPV were compared to those obtained by CV on both GCE and Pt electrodes.
Published in | Biochemistry and Molecular Biology (Volume 2, Issue 3) |
DOI | 10.11648/j.bmb.20170203.11 |
Page(s) | 25-36 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Vitamin C, Cyclic Voltammetry, Differential Pulse Voltammetry, Glassy Carbon Electrode, Platinum Electrode, Liver, Tomato
[1] | Kroner Z., Vitamins and minerals, ABC-CLIO, LLC, Santa Barbara, California, 2011. |
[2] | Yilmaz1 S., Sadikoglu M., Saglikoglu1 G., Yagmur1 S. and Askin G.Int.J.Electrochem.Sci.,2008,3,1534–1542. |
[3] | Okiei W., Ogunlesi M., Azeez L., Obakachi V., Osunsanmiand M., NkenchorInt G, Int. J. Electrochem. Sci., 2009, 4, 276–287. |
[4] | Eitenmiller R. R., Landen W. O. and Ye L.,Vitamin analysis for the health and food sciences,2nded.,CRC PressTaylor & Francis Group,2008. |
[5] | Ball M. F. G., Vitamins: Their role in the human body, Blackwell publishing, 2004. |
[6] | Combs F. G., The vitamins: fundamental aspects innutrition and health, 3rded, Elsevier Academic Press,2008. |
[7] | WHO, Vitamin and mineral requirements in human nutrition, 2nd ed., World HealthOrganization and Food and Agriculture Organization of the United Nations, 2004. |
[8] | Esch R. J., Friend R. J. and Kariuki K. J., Int. J. Electrochem. Sci., 2010,5,146–1474 |
[9] | Mccormick B. D., Rucker B. R., Suttie W. J., and Zempleni J., Hand book of vitamins, 4thed. CRC Press Taylor &Francis Group, 2007. |
[10] | Pisoschi A. M., Pop A., Negulescu G. P. and Pisoschi A.,Molecules,2011, 16, 1349-1365. |
[11] | http://www.umm.edu/altmed/articles/vitamin-c-000339.htm#ixzz1wfkr4sQR,May13, 2012. |
[12] | Izuagie A.A. and Izuagie F.O.,Research Journal of Agriculture and Biological Sciences,2007,3,367-369. |
[13] | Okiei W., Ogunlesi M., Azeez L., Obakachi V., Osunsanmi M. and Nkenchor G., Int. J. Electrochem. Sci., 2009,4,276–287. |
[14] | Yang J., Mab Q., Hung F., Sun L. and Dong J.,Analytical letters, 1998, 31, 2757-2766. |
[15] | Dilgin Y. andNis G., Analytical Letters,2006,39,451–465. |
[16] | Florou A. B., Prodromidis M.I., Karayannis M.I. and Tzouwara-Karayanni S. M., Analytica Chimica Acta, 2000, 409, 113–121. |
[17] | Lopes P., Drinkine J., Saucier C. and Glories Y., Analytica Chimica Acta, 2006,555, 242–245 |
[18] | Hu L., Li L., Luo Z., Yang J. and Liu W., Journal of Chromatographic Science 2012, 50,102–107 |
[19] | Kesic A., Mazalovic M., Crnkic A., Catovic B., Hadzidedic S., Dragosevic G., Eu. J. Sci. Research, 2009, 32, 95-101. |
[20] | Revanasiddappa H. D. and Veena M. A., E-Journal of Chemistry, 2008,5,10-15. |
[21] | Mustafa O., Kubilay G., Burcu B. and Resat O.,Analytica Chimica Acta, 2007,588,88–95. |
[22] | Pisoschi A. M., Cheregi M. C. and Danet A. F., Molecules, 2009, 14, 480-493. |
[23] | Cooper J. A., Wu M. and Compton R. G., Anal. Chem. 1998,70,2922-2927 |
[24] | Babu T., Suneesh P., Ramachandran T. and Nair B., Analytical Letters, 2010, 43, 2809–2822. |
[25] | O’Connell P., Gormally C., Pravda M., and Guilbault G., AnalyticaChimicaActa, 431, 2001,239–247 |
[26] | Fei J., Luo L., Hu S., Gao Z.,Electroanalysis, 2004,16,319-323. |
[27] | Nalini B. and Narayanan S., AnalyticaChimicaActa, 2000, 405, 93–97. |
[28] | Pournaghi-Azar M. H., Razmi-Nerbin H., and Hafezi B., Electroanalysis, 14, 2002, 206-2012. |
[29] | Arvand M., Sohrabnezhad S.,Mousavi M.,Shamsipur M., M.Zanjanchi, Analytica Chimica Acta,491,2003,193–201 |
[30] | Razmi H. and Harasi M., Int. J. Electrochem. Sci., 2008,3,82 – 95. |
[31] | Akkermans R. P., Wu M., Bain C. D., Fidel-Sua´rez M., and Compton R. G., Electroanalysis, 1998, 10,613-620. |
[32] | Tavakkoli N., Nasrollahi S. and Vatankhah G., Electroanalysis, 2012, 24, 368–375. |
[33] | Khorasani-Motlagh M. and Noroozifar M., Turk J Chem, 2004, 28, 369-378. |
[34] | Yu A. and Chen H., Analytica Chimica Acta, 1997, 344, 181-185. |
[35] | Ensafi A. A., Analytical letters, 2003, 36, 591–604. |
[36] | Raoof J., Ojani R., and Beitollahi H., Int. J. Electrochem. Sci., 2007,2,534–548. |
[37] | Surya A., Murthy N. and Sharrna J.,Electrounalyis, 1997, 9,726-729. |
[38] | Ernst H. and Knoll M., AnalyticaChimicaActa, 2001,449,129–134. |
[39] | Gu H., Yu A., and Chen H.,Analytical letters,2001, 34,2361–2374. |
[40] | Sun L.,Zhang J., and Liu K.,Analytical Letters, 2007,40,3050–3059. |
[41] | Li1Y. and Zhan S.,J.Dispersion Sci. and Tech., 2008,29,1421–1425 |
[42] | Ngai K. S., Tan W. T., Zainal Z., Zawawi R. M., and Zidan M., Int. J. Electrochem. Sci., 2012,74210–4222. |
[43] | Goh1J. K., Tan W. T., Lim F. T., and Maamor N. A. M.,The Malaysian J. of Anal. Sci., 2008, 12,480 – 485. |
[44] | Hoyle C. H. V. and Santos J. H., Int. Food Research Journal, 2010, 17, 937-946. |
[45] | Bruna C., Medeiros R. A.,Romeu C. R., and Fatibello-Filho O., Electroanalysis, 2010, 22,1717–1723. |
[46] | Chang M. and Chang C., J. Food and Drug Analysis, 2005, 13, 205-211. |
[47] | Sartori E. R. and Fatibello-Filho O., Electroanalysis, 24, 2012, 627–634. |
[48] | Bagheri A., Emami F., and Nateghi M.R., Analytical Letters, 1997, 30, 2023-2028. |
[49] | Ly S. Y., Chae J. I., Jung Y. S., Jung W. W., Lee H. J.and Lee S. H., Nahrung/Food48, 2004, 201–204. |
[50] | Ernst H. and Knoll M., AnalyticaChimicaActa, 2001, 449, 129–134. |
[51] | Zidan M., Tee T. W., Abdullah A. H., Zainal Z., Goh K. J., Int. J. Electrochem. Sci., 2011, 6, 289–300. |
[52] | Neto A. C. R., Pires R. F., Malagoni R. A. and Franco M. R., Jr., J. Chem. Eng., 2010, 55, 1718–1721. |
[53] | Gaoa Z., Siow K. S., Adeline N. and Zhangb Y., Analytica Chimica Acta 1997, 343, 49-57. |
[54] | Shankar S. S., Swamy B. E. K., Chandra U., Manjunatha J. G. and Sherigara B.S., Int. J. Electrochem. Sci., 2009, 4, 592–601. |
[55] | Pisoschi A. M., Danet A. F. and Kalinowski S., J. Automated Method. and Manage. ment in Chem., 2008, 2008, 1-8. |
[56] | Kilmartin P. A., Zou H., and Waterhouse A. L., J. Agric. Food Chem., 2001, 49, 1957-1965. |
[57] | Radovan C., Cofan C. and Cinghitaa D, Electroanalysis, 2008, 20, 1346–1353. |
[58] | D. A. Skoog, J. J. Leary, Principles of instrumental analysis, 4th ed., 1992, New York. |
[59] | H. H. Girault, Analytical and physical electrochemistry, 2004, EPFL Press. |
[60] | A. J. Bard and L. R.Faulkner, Electrochemical methods: fundamentals and applications, 2nded., 2001, John Wiley & Sons Ltd. |
[61] | J. Wang, Analyticalelectrochemistry, 2nd Ed., 2000, John Wiley &Sons LTD. |
[62] | F. G. Thomas and G. Henze, Introduction to Voltammetric Analysis Theory and Practice, 2001, CSIRO publishing. |
[63] | R. Gulaboski and C. M. Pereira, Handbook of Food Analysis Instruments, 2008, Otles. |
[64] | F. Scholz, Electroanalytical Methods Guide to Experiments and Applications, 2nd Ed, 2010, Springer-Verlag Berlin Heidelberg. |
[65] | R. W. Heinemanand T. P. Kissinger, Laboratory techniques in electroanalytical chemistry, 2nded., Marcel Dekker, inc., Madison Avenue, New York, 1996. |
[66] | P. Monk, Fundamentals of electroanalytical chemistry, 2001, John Wiley &Sons LTD. |
[67] | C. G. Zoski, Handbook of Electrochemistry, 2007, Elsevier. |
[68] | Coatanea M., Darchen A. and Hauchard D., Sensors and accutators, 2001, 76, 539-547. |
APA Style
Tsegaye Tadesse, Assefa Sirgawie. (2017). A Comparative Study on Electrochemical Determination of Vitamin C in Liver and Tomato Using Platinum and Glassy Carbon Electrodes (Original Article). Biochemistry and Molecular Biology, 2(3), 25-36. https://doi.org/10.11648/j.bmb.20170203.11
ACS Style
Tsegaye Tadesse; Assefa Sirgawie. A Comparative Study on Electrochemical Determination of Vitamin C in Liver and Tomato Using Platinum and Glassy Carbon Electrodes (Original Article). Biochem. Mol. Biol. 2017, 2(3), 25-36. doi: 10.11648/j.bmb.20170203.11
AMA Style
Tsegaye Tadesse, Assefa Sirgawie. A Comparative Study on Electrochemical Determination of Vitamin C in Liver and Tomato Using Platinum and Glassy Carbon Electrodes (Original Article). Biochem Mol Biol. 2017;2(3):25-36. doi: 10.11648/j.bmb.20170203.11
@article{10.11648/j.bmb.20170203.11, author = {Tsegaye Tadesse and Assefa Sirgawie}, title = {A Comparative Study on Electrochemical Determination of Vitamin C in Liver and Tomato Using Platinum and Glassy Carbon Electrodes (Original Article)}, journal = {Biochemistry and Molecular Biology}, volume = {2}, number = {3}, pages = {25-36}, doi = {10.11648/j.bmb.20170203.11}, url = {https://doi.org/10.11648/j.bmb.20170203.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bmb.20170203.11}, abstract = {Ascorbic acid, a water-soluble vitamin, is the most common electroactive biological compound found in most biological species. The electrochemical oxidation of vitamin C was investigated at GCE and Pt electrodes in various aqueous solutions in the pH range of 1 to 5 (0.1 M KCl as a supporting electrolyte) by CV and DPV. Experimental conditions, for CV: Scan rate of 50 mV/s, Initial potential -100 mV and Final Potential 1000 mV, for DPV: Scan Rate 50mV/s, Pulse amplitude 50mV,Pulse period 125 ms, Initial potential -100mV and Final Potential 1000 mV. For cyclic voltammetry, Regression equation of y=23.4611X + 13.2489 for GCE and y=5.19714X + 13.7071 Pt; LOD of 0.0035294 mM for GCE and 0.0176 mM for Pt; LOQ of 0.025519 mM for GCE and 0.085066 mMPt; R.S.D of % 2.76% for GCE and 4.42% for Pt. And for DPV Regression equation, y = 1.201X + 0.530393 for GCE andy = 0.0521393X + 0.506857 for Pt, R.S.D % 0.391% for GCE and 4.969% for Pt, LOD 0.12412 mM for GCE and 0.22497 mM for Pt and LOQ 0.4137 mM for GCEand 0.7499 mM for Pt. The oxidation peak potential of ascorbic acid were 270 mV and 370 mV for GCE in CV and DPV respectively but for Pt electrode 490 mV for CV and 370 mV for DPV (versus Ag/AgCl reference electrode). The influence of the operational parameters like scan rate, pulse amplitude, pulse period, concentration and pH on the analytical signal was investigated. The method developed by standard was applied to ascorbic acid assessment in liver and tomato samples. The results of ascorbic acid assessment by DPV were compared to those obtained by CV on both GCE and Pt electrodes.}, year = {2017} }
TY - JOUR T1 - A Comparative Study on Electrochemical Determination of Vitamin C in Liver and Tomato Using Platinum and Glassy Carbon Electrodes (Original Article) AU - Tsegaye Tadesse AU - Assefa Sirgawie Y1 - 2017/05/27 PY - 2017 N1 - https://doi.org/10.11648/j.bmb.20170203.11 DO - 10.11648/j.bmb.20170203.11 T2 - Biochemistry and Molecular Biology JF - Biochemistry and Molecular Biology JO - Biochemistry and Molecular Biology SP - 25 EP - 36 PB - Science Publishing Group SN - 2575-5048 UR - https://doi.org/10.11648/j.bmb.20170203.11 AB - Ascorbic acid, a water-soluble vitamin, is the most common electroactive biological compound found in most biological species. The electrochemical oxidation of vitamin C was investigated at GCE and Pt electrodes in various aqueous solutions in the pH range of 1 to 5 (0.1 M KCl as a supporting electrolyte) by CV and DPV. Experimental conditions, for CV: Scan rate of 50 mV/s, Initial potential -100 mV and Final Potential 1000 mV, for DPV: Scan Rate 50mV/s, Pulse amplitude 50mV,Pulse period 125 ms, Initial potential -100mV and Final Potential 1000 mV. For cyclic voltammetry, Regression equation of y=23.4611X + 13.2489 for GCE and y=5.19714X + 13.7071 Pt; LOD of 0.0035294 mM for GCE and 0.0176 mM for Pt; LOQ of 0.025519 mM for GCE and 0.085066 mMPt; R.S.D of % 2.76% for GCE and 4.42% for Pt. And for DPV Regression equation, y = 1.201X + 0.530393 for GCE andy = 0.0521393X + 0.506857 for Pt, R.S.D % 0.391% for GCE and 4.969% for Pt, LOD 0.12412 mM for GCE and 0.22497 mM for Pt and LOQ 0.4137 mM for GCEand 0.7499 mM for Pt. The oxidation peak potential of ascorbic acid were 270 mV and 370 mV for GCE in CV and DPV respectively but for Pt electrode 490 mV for CV and 370 mV for DPV (versus Ag/AgCl reference electrode). The influence of the operational parameters like scan rate, pulse amplitude, pulse period, concentration and pH on the analytical signal was investigated. The method developed by standard was applied to ascorbic acid assessment in liver and tomato samples. The results of ascorbic acid assessment by DPV were compared to those obtained by CV on both GCE and Pt electrodes. VL - 2 IS - 3 ER -