Calcined Mussel Shells (CMS) doped with ZnCl2 are an efficient natural, accessible and reusable catalyst for the synthesis of benzimidazoles, benzoxazoles and benzothiazoles using o-phenylenediamine, o-aminophenol and o-aminothiophenol with different aldehydes. Their actions were conducted under reflux conditions in the air. The procedure is very simple with good to excellent yields in a short reaction time, easy purification. The catalyst can be recycled effectively after used.
Published in | International Journal of Bioorganic Chemistry (Volume 2, Issue 3) |
DOI | 10.11648/j.ijbc.20170203.21 |
Page(s) | 153-158 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Calcined Mussel Shells (CMS), Heterogeneous Catalysis, Benzimidazoles, Benzoxazoles, Benzothiazoles, Green Chemistry
[1] | M. R. Grimmett, “Imidazole and Benzimidazole Synthesis, ”Academic Press Inc, 1997. |
[2] | A. Bhatnagar, P. K. Sharma, N. A. Kumar, “A review on Imidazoles: their chemistry and pharmacological potentials,” Int. J. Pharm Tech Res, vol. 3, pp. 268-282, 2011. |
[3] | R. J. Sundberg, R. B. Martin, “Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems,”Chem. Rev, vol.74, pp. 471-517, 1974. |
[4] | C. Chen, Y. J. Chen, “Liquid-phase synthesis of 2-substituted benzimidazoles, benzoxazoles and benzothiazoles,” Tetrahedron. Lett, vol. 45, pp. 113-115, 2004. |
[5] | X. Song, B. S. Vig, P. L. Lorenzi, J. C. Drach, L. B. Townsend, G. L. Amidon, “Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole as potential substrates of PEPT1transporter,” J. Med. Chem, vol. 48, pp. 1274-1277, 2005. |
[6] | Y. Yildiz, I. Yalcin, E. Aki-Sener, N. Ucarturk, “Synthesis and structure-activity relationships of new antimicrobial active multisubstituted benzazole derivatives,”Eur. J. Med. Chem, vol. 39, pp. 291-298, 2004. |
[7] | M. Yamato, “Study on the development of biological-active compounds after the model of natural products,” J. Pharm. Soc. Jpn, vol. 112, pp. 81-99, 1992. |
[8] | A. Benazzouz, T. Boraud, P. Dubedat, A. Boireau, J. M. Stutzmann, C. Gross, “Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study,” Eur. J. Pharmacol, vol. 284, pp. 299-307, 1995. |
[9] | D. Kumar, M. R. Jacob, M. B. Reynolds, S. M. Kerwin, “Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1,” Bioorg. Med. Chem, vol. 10, pp. 3997-4004, 2002. |
[10] | D. A. Evans, C. E. Sacks, W. A. Kleschick, T. R. Taber, “Polyether antibiotics synthesis. Total synthesis and absolute configuration of the ionophore A-23187,” J. Am. Chem. Soc, vol. 101, pp. 6789-6791, 1979. |
[11] | A. Figge, H. J. Altenbach, D. J. Brauer, P. Tielmann, “Synthesis and resolution of 2-(2-diphenylphosphinyl-naphthalen-1-yl)-1-isopropyl-1H-benzoimidazole; a new atropisomeric P, N-chelating ligand for asymmetric catalysis,” Tetrahedron Asymmetry, vol.13, pp. 137-144, 2002. |
[12] | S. T. Huang, I. J. Hsei, C. Chen, “Synthesis and anticancer evaluation of bis (benzimidazoles), bis (benzoxazoles), and benzothiazoles,” Bioorg. Med. Chem, vol. 14, pp. 6106-6119, 2006. |
[13] | J. L. Girardet, L. B. Townsend, “Synthesis of β-1-lyxofuranosyl benzimidazoles by an unexpected intramolecular displacement reaction,” J. Org. Chem, vol. 64, pp. 4169-4172, 1999. |
[14] | C. M. Yeh, C. L. Tung, C. M. Sun, “Combinatorial liquid-phase synthesis of structurally diverse benzimidazole libraries,” J. Comb. Chem, vol. 2, pp. 341-348, 2000. |
[15] | J. J. Chen, V. Wie, J. C. Drach, L. B. Townsend, “Synthesis and antiviral evaluation of trisubstitutedindoleN-Nucleosides as analogues of 2, 5, 6-trichloro-1-(β-d-ribofuranosyl)benzimidazole (TCRB),” J. Med. Chem, vol. 43, pp. 2449-2456, 2000. |
[16] | D. Tumelty, K. Cao, C. P. Holmes, “Traceless solid-phase synthesis of substituted benzimidazoles via a base-cleavable linker,” Org. Lett, vol. 3, pp. 83-86, 2001. |
[17] | J. Mann, A. Baron, Y. Opoku-Boahen, E. Johansson, G. Parkinson, L. R. Kelland, S. Neidle, “A new class of symmetric bis benzimidazole-based DNA minor groove-binding agents showing antitumor activity,” J. Med. Chem, vol. 44, pp. 138-144, 2001. |
[18] | B. Raju, N. Nguyen, G. W. Holland, “Solution-phase parallel synthesis of substituted benzimidazoles,” J. Comb. Chem.4, 320-328, 2002. |
[19] | H. Akamatsu, K. Fukase, S. Kusumoto, New efficient route for solid-phase synthesis of benzimidazole derivatives,” J. Comb. Chem, vol. 4, pp. 475-483, 2002. |
[20] | C. E. Hoesl, A. Nefzi, R. A. Houghten, “Parallel solid-phase synthesis of 2-imino-4-oxo-1, 3, 5-triazino [1, 2-a]benzimidazoles via tandem aza-wittig/heterocumulene-mediated annulation reaction,” J. Comb. Chem, vol. 5, pp. 155-160, 2003. |
[21] | D. Vourloumis, M. Takahashi, K. B. Simonsen, B. K. Ayida, S. Barluenga, G. C. Winters, T. Hermann, “Solid-phase synthesis of benzimidazole libraries biased for RNA targets,” Tetrahedron Lett, vol. 44, pp. 2807-2811, 2003. |
[22] | N. H. Cano, J. G. Uranga, M. Nardi, A. Procopio, D. A. Wunderlin and A. N. Santiago, “Selective and eco-friendly procedures for the synthesis of benzimidazoles derivatives. The role of the Er (OTf)3 catalyst in the reaction selectivity”, Beilstein J. Org. Chem. 2016, 12, 2410–2419. |
[23] | D. F. Shi, T. D. Bradshaw, S. Wrigley, C. J. McCall, P., Lelieveld, I. Fichtner, M. F. G. Stevens, “Antitumor benzothiazoles. Synthesis of 2-(4-aminophenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo,” J. Med. Chem, vol. 39, pp. 3375-3384, 1996. |
[24] | X. Beebe, D. Wodka, T. J. Sowin, “Solid-phase synthesis of benzoxazoles from 3-nitrotyrosine,” J. Comb. Chem, vol. 3, pp. 360-366, 2001. |
[25] | A. Hari, C. Karan, W. C. Rodrigues, B. L. Miller, “Extending the scope of chromium-manganese redox-coupled reactions: a one-pot synthesis of benzoxazoles,” J. Org. Chem, vol. 66, pp. 991-996, 2001. |
[26] | R. S. Pottorf, N. K. Chadha, M. Katkevics, V. Ozola, E. Suna, H. Ghane, T. Regberg, M. R. Player, “Parallel synthesis via microwave-assisted dielectric heating,” Tetrahedron Lett, vol. 44, pp. 175-178, 2003. |
[27] | F. Chen, C. Shen, D. Yang, “A simple protocol for the synthesis of 2-arylbenzoxazoles by oxidation with o-iodoxybenzoic acid (IBX) and its application in the synthesis of arylbenzoxazole-containing amino acids,” Tetrahedron Lett, vol. 52, pp. 2128-2131, 2011. |
[28] | M. S. Chua, D. F. Shi, S. Wrigley, T. D. Bradshaw, I. Hutchinson, P. N. Shaw, D. A. Barrett, L. A. Stanley, M. F. G. Stevens, “Antitumor benzothiazoles. Synthesis of 2-(4-acylaminophyl)benzothiazoles and investigations into the role of acetylation in the antitumor activities of the parent amines,” J. Med. Chem, vol. 42, pp. 381-392, 1999. |
[29] | E. Kashiyama, I. Hutchinson, M. S. Chua, S. F. Stinson, L. R. Phillips, G. Kaur, E. A. Sausville, T. D. Bradshaw, A. D. Westwell, M. F. G. Stevens, “Antitumor benzothiazoles. Synthesis, metabolic formation, a, d biological properties of the C- and N- oxidation products of antitumor 2-(4-aminophenyl)benzothiazoles,” J. Med. Chem, vol. 42, pp. 4172-4184, 1999. |
[30] | I. Hutchinson, M. S. Chua, H. L. Browne, V. Trapani, T. D. Bradshaw, A. D. Westwell, M. F. G. Stevens, “Antitumor benzothiazoles. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzothiazoles,” J. Med. Chem, vol. 44, pp. 1446-1455, 2001. |
[31] | W. Leng, Y. Zhou, O. Xu, J. Liu, “Synthesis and characterization of nonlinear optical side-chain polyimides containing the benzothiazolechromophores,” Macromolecules, vol. 34, pp. 4774-4779, 2001. |
[32] | I. Hutchinson, S. A. Jennings, B. R. Vishnuvajjala, A. D. Westwell, M. F. G. “Stevens, Antitumor benzothiazoles. Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl)benzothiazoleaminoacid prodrugs,” J. Med. Chem, vol. 45, pp. 744-747, 2002. |
[33] | Y. Riadi, R. Mamouni, Y. Abrouki, M. Elhaddad, N. Saffaj, S. ElAntri, S. Routier, G. Guillaumet, S. Lazar, “Animal bone meal (ABM): A novel natural catalyst for thia-michael addition,” Lett. Org. Chem, vol.7, pp. 269-271, 2010. |
[34] | Y. Riadi, R. Mamouni, R. Azzalou, R. Boulahjar, Y. Abrouki, M. Elhaddad, S. Routier, G. Guillaumet, S. Lazar, “Animal bone meal as an efficient catalyst for crossed-aldolcondensation,” Tetrahedron Lett, vol. 51, pp. 6715-6717, 2010. |
[35] | Y. Riadi, R. Mamouni, R. Azzalou, M. Elhaddad, S. Routier, G. Guillaumet, S. Lazar, “An efficient and reusable heterogeneous catalyst animal bone meal for facile synthesis of benzimidazoles, benzoxazoles, and benzothiazoles,” Tetrahedron Lett, vol. 52, pp. 3492-3495, 2011. |
[36] | Y. Riadi, Y. Abrouki, R. Mamouni, M. Elhaddad, S. Routier, G. Guillaumet, S. Lazar, “New eco-friendly animal meal catalysts for preparation of chalcones and aza-michael adducts,” Chem. Cent. J, vol. 6, pp. 60-66, 2012. |
[37] | Y. Riadi, R. Slimani, A. Haboub, S. Elantri, M. Safi, S. Lazar, “Calcined eggshell meal: new solid support for the knoevenagel reaction in heterogeneous media,” Mor. J. Chem, vol. 1, pp. 24-28, 2013. |
[38] | L. Songnian, Y. Lihu, “A simple and efficient procedure for the synthesis of benzimidazoles using air as the oxidant,” Tetrahedron Lett, vol. 46, pp. 4315-4319, 2005. |
[39] | K. Bougrin, A. Loupy, M. Soufiaoui, “Trois nouvelles voies de synthèse des dérivés 1,3-azoliques sous micro-ondes,” Tetrahedron, vol. 54, pp. 8055-8064, 1998. |
[40] | S. L. Balaji, R. P. Umesh, R. M. Jyotirling, A. M. Ramrao, “Synthesis of 2-arylbenzothiazoles catalyzed by biomimetic catalyst, β-cyclodextrin Bull.” Korean Chem. Soc, vol. 31, pp. 2329-2332, 2010. |
[41] | A. Haboub, M. Hamlich, S. Harkati, Y. Riadi, R. Slimani, M. Aadil, A. Anouzla, S. Lazar, M. Safi, “New methodologie eco-friendly using calcined eggshell meal catalyst for synthesis of benzimidazoles, benzoxazoles and benzothiazoles,” Am. J. Env. Prot, vol. 4, pp. 28-32, 2015. |
[42] | S. Harkati, M. Hamlich, F. Echabbi, Y. Riadi, R. Slimani, K. Halim, S. Lazar, M. Safi, “Calcined limpet shell: new solid support for an easy synthesis of benzimidazoles, benzoxazoles and benzothiazoles in heterogeneous media,” J. Mar. Chim. Heterocycl, vol. 15, pp. 32-40, 2016. |
[43] | M. Hamlich, S. Harkati, S. Lazar, M. Safi, Y. Riadi, “A novel green synthesis of pyrimidinone derivatives via Biginelli reaction using Animal Bone Meal as catalyst.,” J. Mat. Env. Scien, vol. 7, pp. 4692-4696, 2016. |
APA Style
Meryem Hamlich, Souad Harkati, Yassine Riadi, Rachid Slimani, Lakhmiri Rajae, et al. (2017). Calcined Mussel Shells Doped with Metal Halides as a Novel Catalyst for the Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles. International Journal of Bioorganic Chemistry, 2(3), 153-158. https://doi.org/10.11648/j.ijbc.20170203.21
ACS Style
Meryem Hamlich; Souad Harkati; Yassine Riadi; Rachid Slimani; Lakhmiri Rajae, et al. Calcined Mussel Shells Doped with Metal Halides as a Novel Catalyst for the Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles. Int. J. Bioorg. Chem. 2017, 2(3), 153-158. doi: 10.11648/j.ijbc.20170203.21
AMA Style
Meryem Hamlich, Souad Harkati, Yassine Riadi, Rachid Slimani, Lakhmiri Rajae, et al. Calcined Mussel Shells Doped with Metal Halides as a Novel Catalyst for the Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles. Int J Bioorg Chem. 2017;2(3):153-158. doi: 10.11648/j.ijbc.20170203.21
@article{10.11648/j.ijbc.20170203.21, author = {Meryem Hamlich and Souad Harkati and Yassine Riadi and Rachid Slimani and Lakhmiri Rajae and Said Lazar and Mohamed Safi}, title = {Calcined Mussel Shells Doped with Metal Halides as a Novel Catalyst for the Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles}, journal = {International Journal of Bioorganic Chemistry}, volume = {2}, number = {3}, pages = {153-158}, doi = {10.11648/j.ijbc.20170203.21}, url = {https://doi.org/10.11648/j.ijbc.20170203.21}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijbc.20170203.21}, abstract = {Calcined Mussel Shells (CMS) doped with ZnCl2 are an efficient natural, accessible and reusable catalyst for the synthesis of benzimidazoles, benzoxazoles and benzothiazoles using o-phenylenediamine, o-aminophenol and o-aminothiophenol with different aldehydes. Their actions were conducted under reflux conditions in the air. The procedure is very simple with good to excellent yields in a short reaction time, easy purification. The catalyst can be recycled effectively after used.}, year = {2017} }
TY - JOUR T1 - Calcined Mussel Shells Doped with Metal Halides as a Novel Catalyst for the Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles AU - Meryem Hamlich AU - Souad Harkati AU - Yassine Riadi AU - Rachid Slimani AU - Lakhmiri Rajae AU - Said Lazar AU - Mohamed Safi Y1 - 2017/05/16 PY - 2017 N1 - https://doi.org/10.11648/j.ijbc.20170203.21 DO - 10.11648/j.ijbc.20170203.21 T2 - International Journal of Bioorganic Chemistry JF - International Journal of Bioorganic Chemistry JO - International Journal of Bioorganic Chemistry SP - 153 EP - 158 PB - Science Publishing Group SN - 2578-9392 UR - https://doi.org/10.11648/j.ijbc.20170203.21 AB - Calcined Mussel Shells (CMS) doped with ZnCl2 are an efficient natural, accessible and reusable catalyst for the synthesis of benzimidazoles, benzoxazoles and benzothiazoles using o-phenylenediamine, o-aminophenol and o-aminothiophenol with different aldehydes. Their actions were conducted under reflux conditions in the air. The procedure is very simple with good to excellent yields in a short reaction time, easy purification. The catalyst can be recycled effectively after used. VL - 2 IS - 3 ER -