| Peer-Reviewed

Spatial Variation of Soil Available Phosphorous in the Dal Lake Catchment of Lesser Himalayas

Received: 3 December 2015     Published: 3 December 2015
Views:       Downloads:
Abstract

The study attempts to evaluate the spatial pattern of soil available phosphorus, and its availability with respect to various factors including elevation, slope and landuse using statistical methods and GIS spatial analysis techniques. The results showed that the Ordinary Kriging Spherical method performed the best in the prediction of soil available phosphorus in the Dal Lake catchment. The spatial variation of soil available phosphorus was high in Dal Lake catchment and the upstream regions around Dal Lake, including the north of Dal Lake, had the highest soil available phosphorus content. The mean and standard deviation of soil available phosphorus content gradually decreased as the slope increased. The cultivated land comprised 24.36% of the catchment and out of that land 50.81% belonged to the medium to very high SAP level classes, and it played a major role in SAP availability within the catchment and a potential source of phosphorus to Dal Lake resulting in eutrophication. Among land use types, paddy fields have some of the highest maximum values and variation of coefficients. Sub watershed scale soil available phosphorus was significantly affected by elevation, slope and landuse and was decided by not only these environmental factors but also some other factors such as artificial phosphorus fertilizer application.

Published in International Journal of Environmental Monitoring and Analysis (Volume 3, Issue 5)
DOI 10.11648/j.ijema.20150305.29
Page(s) 364-372
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Soil Available Phosphorous, Spatial Distribution, Environmental Factor, Dal Lake Catchment

References
[1] Environmental Systems Research Institute, Inc (ESRI). ArcGIS Desktop Help 9.2; ESRI: Redlands, CA, USA, 2007. Available online: http://webhelp.esri.com/arcgis desktop/9.2/index.cfm?Topic Name=welcome (accessed on 20 July 2011).
[2] Li, M.; Wu, Y.J.; Yu, Z.L.; Sheng, G.P.; Yu, H.Q. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water Res. 2009, 43, 1247-1256.
[3] Lin, J.S.; Shi, X.Z.; Lu, X.X.; Yu, D.S.; Wang, H.J.; Zhao, Y.C.; Sun, W.X. Storage and spatial variation of phosphorus in paddy soils of China. Pedosphere, 2007, 19, 790-798.
[4] Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Chemical and Microbiological Properties; Page, A.L., Ed.; ASA and SSSA: Madison, WI, USA, 1982, pp. 403-430.
[5] Page, T.; Haygarth, P.M.; Beven, K.J.; Joynes, A.; Butler, T.; Keeler, C.; Freer, J.; Wwens P.N.; Wood, G.A. Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: sampling for assessing risk to water quality. J. Environ. Qual., 2005, 34, 2263-2277.
[6] Robinson, T.P.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agr., 2006, 50, 97-108.
[7] Sherwood, L.J.; Qualls, R.G. Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environ. Sci. Technol., 2001, 35, 4126-4131.
[8] Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystem. Environ. Pollut. 1999, 100, 179-196.
[9] Timmermans, W.J.; Kustas, W.P.; Anderson, M.C.; French, A.N. An intercomparison of the surface energy balance algorithm for land SEBAL and the two-source energy balance TSEB modeling schemes. Rem. Sens. Environ. 2007, 108, 369-384.
[10] Wani, Mushtaq A., Zahid Mushtaq and Shaista Nazir. Mapping of micronutrients of the submerged rice soils of Kashmir. Research Journal of Agricultural Sciences, 2010, 1(4): 458-462.
[11] Wani, Mushtaq A., Wani, Zahid, M., Bhat, M.A., Kirmani, N.A. and Shaista, N. Mapping of DTPA extractable cationic micronutrients in soils under rice-and maize ecosystems of Kupwara district in Kashmir-A GIS approach. Journal of the Indian Society of Soil Science, 2014, 62:351-359.
[12] Wani, Mushtaq A., Wani Zahid M., Shaista, N., Kirmani, N.A. and Bhat, M.A. Spatial Variability of DTPA Extractable Cationic Micronutrients in Northern Part of Lesser Himalayas using GIS Approach. Research Journal of Agricultural Sciences, 2015, 6:8-14.
[13] Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309-1313.
[14] Yamashita, N.; Ohta, S.; Sase, H.; Luangjame, J.; Visaratana, T.; Kievuttinon, B.; Garivait, H.; Kanzaki, M. Seasonal and spatial variation of nitrogen dynamics in the litter and surface soil layers on a tropical dry evergreen forest slope. Forest Ecol. Manag, 2010, 259, 1502-1512.
[15] Zare-Mehrjardi, M.; Taghizadeh-Mehrjardi, R.; Akbarzadeh, A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. Not. Sci. Biol. 2010, 2, 92-103.
Cite This Article
  • APA Style

    Mushtaq A. Wani, Zahid M. Wani. (2015). Spatial Variation of Soil Available Phosphorous in the Dal Lake Catchment of Lesser Himalayas. International Journal of Environmental Monitoring and Analysis, 3(5), 364-372. https://doi.org/10.11648/j.ijema.20150305.29

    Copy | Download

    ACS Style

    Mushtaq A. Wani; Zahid M. Wani. Spatial Variation of Soil Available Phosphorous in the Dal Lake Catchment of Lesser Himalayas. Int. J. Environ. Monit. Anal. 2015, 3(5), 364-372. doi: 10.11648/j.ijema.20150305.29

    Copy | Download

    AMA Style

    Mushtaq A. Wani, Zahid M. Wani. Spatial Variation of Soil Available Phosphorous in the Dal Lake Catchment of Lesser Himalayas. Int J Environ Monit Anal. 2015;3(5):364-372. doi: 10.11648/j.ijema.20150305.29

    Copy | Download

  • @article{10.11648/j.ijema.20150305.29,
      author = {Mushtaq A. Wani and Zahid M. Wani},
      title = {Spatial Variation of Soil Available Phosphorous in the Dal Lake Catchment of Lesser Himalayas},
      journal = {International Journal of Environmental Monitoring and Analysis},
      volume = {3},
      number = {5},
      pages = {364-372},
      doi = {10.11648/j.ijema.20150305.29},
      url = {https://doi.org/10.11648/j.ijema.20150305.29},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijema.20150305.29},
      abstract = {The study attempts to evaluate the spatial pattern of soil available phosphorus, and its availability with respect to various factors including elevation, slope and landuse using statistical methods and GIS spatial analysis techniques. The results showed that the Ordinary Kriging Spherical method performed the best in the prediction of soil available phosphorus in the Dal Lake catchment. The spatial variation of soil available phosphorus was high in Dal Lake catchment and the upstream regions around Dal Lake, including the north of Dal Lake, had the highest soil available phosphorus content. The mean and standard deviation of soil available phosphorus content gradually decreased as the slope increased. The cultivated land comprised 24.36% of the catchment and out of that land 50.81% belonged to the medium to very high SAP level classes, and it played a major role in SAP availability within the catchment and a potential source of phosphorus to Dal Lake resulting in eutrophication. Among land use types, paddy fields have some of the highest maximum values and variation of coefficients. Sub watershed scale soil available phosphorus was significantly affected by elevation, slope and landuse and was decided by not only these environmental factors but also some other factors such as artificial phosphorus fertilizer application.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Spatial Variation of Soil Available Phosphorous in the Dal Lake Catchment of Lesser Himalayas
    AU  - Mushtaq A. Wani
    AU  - Zahid M. Wani
    Y1  - 2015/12/03
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijema.20150305.29
    DO  - 10.11648/j.ijema.20150305.29
    T2  - International Journal of Environmental Monitoring and Analysis
    JF  - International Journal of Environmental Monitoring and Analysis
    JO  - International Journal of Environmental Monitoring and Analysis
    SP  - 364
    EP  - 372
    PB  - Science Publishing Group
    SN  - 2328-7667
    UR  - https://doi.org/10.11648/j.ijema.20150305.29
    AB  - The study attempts to evaluate the spatial pattern of soil available phosphorus, and its availability with respect to various factors including elevation, slope and landuse using statistical methods and GIS spatial analysis techniques. The results showed that the Ordinary Kriging Spherical method performed the best in the prediction of soil available phosphorus in the Dal Lake catchment. The spatial variation of soil available phosphorus was high in Dal Lake catchment and the upstream regions around Dal Lake, including the north of Dal Lake, had the highest soil available phosphorus content. The mean and standard deviation of soil available phosphorus content gradually decreased as the slope increased. The cultivated land comprised 24.36% of the catchment and out of that land 50.81% belonged to the medium to very high SAP level classes, and it played a major role in SAP availability within the catchment and a potential source of phosphorus to Dal Lake resulting in eutrophication. Among land use types, paddy fields have some of the highest maximum values and variation of coefficients. Sub watershed scale soil available phosphorus was significantly affected by elevation, slope and landuse and was decided by not only these environmental factors but also some other factors such as artificial phosphorus fertilizer application.
    VL  - 3
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Division of Soil Science, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India

  • Faculty of Remote Sensing and GIS, School of Engineering and Technology, Asian Institute of Technology, Bangkok, Thailand

  • Sections