Research Article | | Peer-Reviewed

Technological and Nutritional Properties of Four Varieties of Sorghum Grains Used in Mali

Received: 21 October 2024     Accepted: 7 November 2024     Published: 3 December 2024
Views:       Downloads:
Abstract

Sorghum (Sorghum bicolor L.) is one of the main cereals widely consumed in Mali. The aim of this study was to contribute to a better understanding of the technological and nutritional properties of four varieties of sorghum (“Duguyiriwa”, “Jakumbe”, “Seguifa”, and “Kenikedje”) consumed in Mali. The physicochemical properties, macronutrients, and micronutrients were determined using gravimetric, spectrophotometric and HPLC methods. Antinutritional factors (ANFs) were determined spectrophotometrically. Furthermore, the technological properties were estimated through the grinding yield, water solubility index (WSI), and absorption capacity of water (WAC) and oil (OAC) via the gravimetric technique. The physical characteristics revealed that the grains from all the varieties were the same forms and sizes, whereas they were different in color and weight. Overall, these grains can be easily stored due to their low humidity (7.28±0.09–8.49±0.20%) and free acidity (< 0.10 °Dornic). The varieties are relatively rich in macronutrients: proteins (5.32–6.38%), carbohydrates (79.90–80.94%) and fibers (2.45–2.84%). In addition, they are potential sources of micronutrients such as potassium, phosphorus, magnesium, calcium and iron. Thin layer chromatography (TLC) highlighted the presence of lysine (an essential amino acid) in all the samples, except Kenikedje. These nutritional values could be reinforced by the nonharmful levels registered with antinutritional factors (ANFs): lectins (0.64–2.52 mg equivalents SAB/100 g) and tannins (0.07–0.13 mg equivalents AG/100 g). Analysis of technological performance revealed that all the investigated varieties possessed good processing abilities. Higher grinding yields (> 92%) and water absorption capacities (WAC > 67%) were observed for all varieties. In terms of technological transformation, the Duguyiriwa sample was the best variety because it presented the highest WAC (74.37±1.44%) and lowest oil absorption capacity (OAC = 8.97±0.05%). In summary, these sorghum varieties are potential sources of nutrients and have good technological processing ability.

Published in International Journal of Nutrition and Food Sciences (Volume 13, Issue 6)
DOI 10.11648/j.ijnfs.20241306.16
Page(s) 291-305
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Sorghum Varieties, Physicochemical, Nutrition, Technology, Mali

References
[1] FAO. Food and Agriculture Organization: GIEWS - Global Information and Early Warning System on Food and Agriculture. Available
[2] Almamy S, Jummai OY, Sekou T. The choice and preference of sorghum value chain actors in Mali. Int J Sociol Anthropol. 2023; 15(1): 41–58.
[3] Diancoumba M, Kholova J, Adama M, Famanta M, Clerget B, Traore P, et al. APSIM‑based modeling approach to understand sorghum production.pdf. Agron Sustain Dev. 2024; 44(25): 1–16.
[4] Kelly V, Diakité L, Teme B. Sorghum Productivity in Mali: Past, Present, and Future. MSU International Development Working Paper. Dep Agric Food, Resour Econ Dep Econ Michigan State Univ East Lansing, Michigan 48824-1039, USA [Internet]. 2015; Available from:
[5] Smale M, Kergna A, Diakite L. An economic assessment of sorghum improvement in Mali. Impact Assessment Report No. 2. Patancheru 502 324, Telangana, India Int Crop Res Inst Semi-Arid Trop. 2016; 1–52.
[6] Sissoko M, Smale M, Castiaux A, Theriault V. Adoption of new sorghum varieties in Mali through a participatory approach. Sustainability. 2019; 11(4780): 1–15.
[7] Maiga AM, Nebie B, Diallo AG, Toure A, Danquah E, Danquah A. Yield, Yield Components and Nutritional Traits Values of Biofortified Sorghum Hybrids in Mali.pdf. J Agric Stud. 2021; 10(1): 1–28.
[8] Maiga AM, Diallo AG, Kane Y. Adaptation of bio-fortified Sorghum hybrids (Sorghum bicolor) to drought resilience in Mali. Int J Agric Environ Bioresearch. 2023; 08(05): 1–12.
[9] Patekar S, More D, Hashmi S. Studies on physico-chemical properties and minerals content from different sorghum genotypes. J Pharmacogn Phytochem. 2017; 6(5): 600–4.
[10] Tounkara F, Amza T, Lagnika C, Le G wei, Shi Y hui. Extraction, characterization, nutritional and functional properties of Roselle (Hibiscus sabdariffa Linn) seed proteins. Songklanakarin Journal of Science & Technology. 2013; 35(2): 159–66.
[11] Tounkara F, Togola I, Konaré MA, Fane MM. Identification of Antioxidative Peptides from Roselle (Hibiscus Sabdariffa Linn) Seeds Protein Hydrolysates. J Food Nutr Sci. 2022; 10(4): 98–105.
[12] Konare MA, Cisse C, Diarra N, Somda MK, Wele M, Sanogo R. Nutritional composition of four underexploited wild fruits in Mali. Food Nutr Sci. 2022; 13: 26–40.
[13] AFNOR. Association Française de Normalisation, NF V03-050, 1970. Directives générales pour le dosage de l’azote avec minéralisation selon la méthode de Kjeldahl, 8p. 1970;
[14] Sanogo R, Aïssa Jazy M, Haïdara M. Chromatographie sur couche mince et activité antiradicalaire d’extraits de Pupalia lappacea (L.) Juss. Amaranthaceae. Eur Sci J. 2018; 14(3): 140–155.
[15] Singh AK, Singh R, Chaudhary DR. Heat conduction and moisture migration in unsaturated soils under temperature gradients. Pramana J Phys. 1989; 587–94.
[16] Guindo F, Konaré MA, Daou C, Kouyaté AM. Influence des types de coupe sur les caractéristiques physico-chimiques et organoleptiques des feuilles de Baobab. Int J Progress Sci Technol. 2022; 34(2): 170.
[17] Subroto E, Jeanette G, Meiyanasari Y, Luwinsky I, Baraddiaz S. Review on the Analysis Methods of Starch, Amylose, Amylopectinin Food and Agricultural Products. Int J Emerg Trends Eng Res. 2020; 8(7): 3519–24.
[18] Merrill AL, Watt BK. Energy value of foods: Basis and derivation. Hum Nutr Res Branch, Agric Res Serv US Dep Agric Handbook; 74p. 1955.
[19] Ahmad MA, Deng X, Adeel M, Rizwan M, Shakoor N, Yang Y, Javed R. Influence of calcium and magnesium elimination on plant biomass and secondary metabolites of Stevia rebaudiana Bertoni. Biotechnology and Applied Biochemistry. 2022; 69(5): 2008-2016.
[20] Gemede HF, Ratta N. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. Int J Nutr Food Sci. 2014; 3(4): 284–9.
[21] Sambe M, Tounkara LS, Lopy MJFS, Diaye YN. Etude des comportements rhéologiques des mélanges de farine blé / sorgho sans tanins issue de trois nouvelles variétés cultivées au Sénégal et mise au point de pains a base de farines. Agronomie africaine. 2017; 29(1): 69–74.
[22] Koutouan F, Yapi Y, Wandan E, Clément N, Phillipe K. Composition en polyphénols totaux et en tanins des feuilles de neuf variétés de Cajanus cajan (L.) Millsp. au cours du premier cycle de croissance et en fonction du mode d’exploitation. Int J Biol Chemecial Sci. 2019; 13(2): 882–898.
[23] Aragão KS. Etudes structure-fonction de lectines (DiscI et DiscII) de Dictyostelium discoideum. Thèse de Doctorat, 124p., Ecole Doctorale Chimie et Sciences du Vivant, Université Joseph Fourier Grenoble, Grenoble, France; 2008.
[24] Pinta M. Méthodes de référence pour la détermination des éléments minéraux dans les végétaux: 1. azote, phosphore, potassium, sodium, calcium, magnésium par les laboratoires membres du comité inter-instituts d’étude des techniques analytiques du diagnostic foliaire. IIe Coll. Eur. Méed. Contrôle Alim. Plantes Cult., 2., Séville (ES), 1968/09. fdi: 16085; 1968.
[25] FDA. Food and Drug Administration (FDA). Food Labeling: Revision of the Nutrition and Supplement Facts Labels. Department of Health and Human Services; 21 CFR Part 101; [Docket No. FDA-2012-N-1210]; RIN 0910-AF22; 943p. Available on
[26] Songre-Ouattara LT, Bationo F, Parkouda C, Dao A, Henri I, Bassole N, et al. Qualité des grains et aptitude à la transformation : cas des variétés de Sorghum bicolor, Pennisetumg laucum et Zea mays en usage en Afrique de l’Ouest. Int J Biol Chem Sci. 2015; 9(6): 2819–32.
[27] Sissoko S, Diallo AG, Niaba T, Coulibaly SB, Coulibaly MM, Vernon G, et al. Farmers’ Varietal preferences, implications in improvement of Sorghum (Sorghum bicolor (L) Moench) and productivity in Mali. J Agric Food Technol. 2016; 6(3): 1–11.
[28] Chantereau J, Cruz JF, Ratnadass A, Trouche G. Le sorgho.,. Rapport de Quæ, CTA, Presses agronomiques de Gembloux, 261p., Dedougou, Burkina Faso; 2013.
[29] Jocelyne RE, Béhiblo K, Ernest AK. Comparative Study of Nutritional Value of Wheat, Maize, Sorghum, Millet, and Fonio: Some Cereals Commonly Consumed in Côte d’Ivoire. Eur Sci J. 2020; 16(21): 118–31.
[30] Doukani K, Tabak S. Profil Physicochimique du fruit “Lendj” (Arbutus unedo L.). Rev Nat Technol. 2015; 12: 53–66.
[31] Sadaka S, Rosentrater KA. The significance of moisture and its measurement in cereal grains and grain products. Storage Cereal Grains Their Prod (Fifth Ed Woodhead Publ. 2022; 261–92.
[32] EDSM-VI. Institut National de la Statistique (INSTAT), Cellule de Planification et de Statistique, Secteur Santé-Développement Social et Promotion de la Famille (CPS/SS-DS-PF), et ICF. Sixième Enquête Démographique et de Santé au Mali 2018. Indicateurs Clés. Bamako, Mali, et Rockville, Maryland, USA : INSTAT, CPS/SS-DS-PF, et ICF.; 2019.
[33] Smith J, Sones K, Grace D, MacMillan S, Tarawali S, Herrero M. Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Anim Front. 2013; 3(1): 6–13.
[34] Fardet A. New hypotheses for the health-protective mechanisms of whole grain cereals: what beyond fibers. Nutr Res Rev. 2010; 23(1): 65–134.
[35] Aversa R, Petrescu RV, Apicella A, Petrescu FI. The Basic Elements of Life’s. Am J Eng Appl Sci. 2016; 9(4): 1189–97.
[36] Rezaee N, Fernando WMADB, Hone E, Sohrabi HR, Johnson SK, Gunzburg S, et al. Potential of Sorghum Polyphenols to Prevent and Treat Alzheimer’s Disease: A Review Article. Front Aging Neurosci. 2021; 13(October): 1–24.
[37] Séraphin DK, Emmanuel AN, Benjamin YK, Dago G. Caracerisation Biochimique et fonctionnelle des graines de sept cultivars de voandzou [Vigna Subterranea (L.) VerDC. Fabaceae]. Eur Sci J Sept. 2015; 11(27): 288–304.
[38] Gampoula RH, Gadet Dzondo M, Moussounga JE, Diakabana P, Pambou-Tobi NPG, Tamba Sompila AWG, et al. Mise au point d’un procédé de formulation d’une farine infantile à base d’igname (Discorea cayenensis) enrichie en protéines par incorporation d’additifs alimentaires d’origine agricole et de pêche. IOSR J Biotechnol Biochem. 2020; 6(6): 24–32.
[39] Birt D, Boylston T, Hendrich S, Jane J, Hollis J, Li L, MeClelland L, Moore S, Phillips GJ, Rowling M, Schalinske K, Scott MP, Whitley EM. Resistant starch: promise for improving human health. Adv Nutr. 2013; 4(6): 587–601.
[40] Wang J, Hu P, Chen Z, Liu Q, Wei C. Progress in High-Amylose Cereal Crops through Inactivation of Starch Branching Enzymes. Front Plant Sci. 2017; 8(April): 1–10.
[41] Hasek L, Phillips R, Zhang G, Kinzig K, Kim C, Powley T, et al. Dietary slowly digestible starch triggers the gut-brain axis in obese rats with accompanied reduced food intake. Mol Nutr Food Res. 2018; 62(5): 1700117.
[42] Thakur A, Sharma V, Thakur A. An overview of anti-nutritional factors in food. Int J Chem Stud. 2019; 7(1): 2472–9.
[43] Park J, Lee S, Chung I, Park Y. Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutr Res Pract. 2012; 6(4): 322–7.
Cite This Article
  • APA Style

    Konaré, M. A., Diawara, Y., Diakité, M., Tounkara, F., Sissoko, S. (2024). Technological and Nutritional Properties of Four Varieties of Sorghum Grains Used in Mali. International Journal of Nutrition and Food Sciences, 13(6), 291-305. https://doi.org/10.11648/j.ijnfs.20241306.16

    Copy | Download

    ACS Style

    Konaré, M. A.; Diawara, Y.; Diakité, M.; Tounkara, F.; Sissoko, S. Technological and Nutritional Properties of Four Varieties of Sorghum Grains Used in Mali. Int. J. Nutr. Food Sci. 2024, 13(6), 291-305. doi: 10.11648/j.ijnfs.20241306.16

    Copy | Download

    AMA Style

    Konaré MA, Diawara Y, Diakité M, Tounkara F, Sissoko S. Technological and Nutritional Properties of Four Varieties of Sorghum Grains Used in Mali. Int J Nutr Food Sci. 2024;13(6):291-305. doi: 10.11648/j.ijnfs.20241306.16

    Copy | Download

  • @article{10.11648/j.ijnfs.20241306.16,
      author = {Mamadou Abdoulaye Konaré and Yacouba Diawara and Méminata Diakité and Fatoumata Tounkara and Sory Sissoko},
      title = {Technological and Nutritional Properties of Four Varieties of Sorghum Grains Used in Mali
    },
      journal = {International Journal of Nutrition and Food Sciences},
      volume = {13},
      number = {6},
      pages = {291-305},
      doi = {10.11648/j.ijnfs.20241306.16},
      url = {https://doi.org/10.11648/j.ijnfs.20241306.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnfs.20241306.16},
      abstract = {Sorghum (Sorghum bicolor L.) is one of the main cereals widely consumed in Mali. The aim of this study was to contribute to a better understanding of the technological and nutritional properties of four varieties of sorghum (“Duguyiriwa”, “Jakumbe”, “Seguifa”, and “Kenikedje”) consumed in Mali. The physicochemical properties, macronutrients, and micronutrients were determined using gravimetric, spectrophotometric and HPLC methods. Antinutritional factors (ANFs) were determined spectrophotometrically. Furthermore, the technological properties were estimated through the grinding yield, water solubility index (WSI), and absorption capacity of water (WAC) and oil (OAC) via the gravimetric technique. The physical characteristics revealed that the grains from all the varieties were the same forms and sizes, whereas they were different in color and weight. Overall, these grains can be easily stored due to their low humidity (7.28±0.09–8.49±0.20%) and free acidity (Kenikedje. These nutritional values could be reinforced by the nonharmful levels registered with antinutritional factors (ANFs): lectins (0.64–2.52 mg equivalents SAB/100 g) and tannins (0.07–0.13 mg equivalents AG/100 g). Analysis of technological performance revealed that all the investigated varieties possessed good processing abilities. Higher grinding yields (> 92%) and water absorption capacities (WAC > 67%) were observed for all varieties. In terms of technological transformation, the Duguyiriwa sample was the best variety because it presented the highest WAC (74.37±1.44%) and lowest oil absorption capacity (OAC = 8.97±0.05%). In summary, these sorghum varieties are potential sources of nutrients and have good technological processing ability.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Technological and Nutritional Properties of Four Varieties of Sorghum Grains Used in Mali
    
    AU  - Mamadou Abdoulaye Konaré
    AU  - Yacouba Diawara
    AU  - Méminata Diakité
    AU  - Fatoumata Tounkara
    AU  - Sory Sissoko
    Y1  - 2024/12/03
    PY  - 2024
    N1  - https://doi.org/10.11648/j.ijnfs.20241306.16
    DO  - 10.11648/j.ijnfs.20241306.16
    T2  - International Journal of Nutrition and Food Sciences
    JF  - International Journal of Nutrition and Food Sciences
    JO  - International Journal of Nutrition and Food Sciences
    SP  - 291
    EP  - 305
    PB  - Science Publishing Group
    SN  - 2327-2716
    UR  - https://doi.org/10.11648/j.ijnfs.20241306.16
    AB  - Sorghum (Sorghum bicolor L.) is one of the main cereals widely consumed in Mali. The aim of this study was to contribute to a better understanding of the technological and nutritional properties of four varieties of sorghum (“Duguyiriwa”, “Jakumbe”, “Seguifa”, and “Kenikedje”) consumed in Mali. The physicochemical properties, macronutrients, and micronutrients were determined using gravimetric, spectrophotometric and HPLC methods. Antinutritional factors (ANFs) were determined spectrophotometrically. Furthermore, the technological properties were estimated through the grinding yield, water solubility index (WSI), and absorption capacity of water (WAC) and oil (OAC) via the gravimetric technique. The physical characteristics revealed that the grains from all the varieties were the same forms and sizes, whereas they were different in color and weight. Overall, these grains can be easily stored due to their low humidity (7.28±0.09–8.49±0.20%) and free acidity (Kenikedje. These nutritional values could be reinforced by the nonharmful levels registered with antinutritional factors (ANFs): lectins (0.64–2.52 mg equivalents SAB/100 g) and tannins (0.07–0.13 mg equivalents AG/100 g). Analysis of technological performance revealed that all the investigated varieties possessed good processing abilities. Higher grinding yields (> 92%) and water absorption capacities (WAC > 67%) were observed for all varieties. In terms of technological transformation, the Duguyiriwa sample was the best variety because it presented the highest WAC (74.37±1.44%) and lowest oil absorption capacity (OAC = 8.97±0.05%). In summary, these sorghum varieties are potential sources of nutrients and have good technological processing ability.
    
    VL  - 13
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Sections