This paper presents the results of an investigation in establishing the physical and mechanical properties of brewer spent grain which have been used in the fabrication of Adobe. The earth block reinforced 2. 4. 6. 8 and 10 percent of brewer spent grain. The characteristics of raw material were investigated using X-ray diffraction (XRD) and FTIR analysis spectra show kaolinite, smectite and quartz. The clay materials are mainly composed of silica SiO2 and alumina Al2O3 and these two oxides. The blocks, after 21 days of curing were tested for density, water absorption, compressive strength, tensile strength, and erosion resistance. It was found that the brewer's spent grain content slightly improved the blocks’ density. The linear shrinkage decreases with brewer-spent grain additions from 0 - 10% allowing in 53%. The thermal conductivity decreases when the brewer spent grain the content of 60% is observed for the adobe containing 10 wt% brewer spent grain. The good compressive strength of the adobes incorporating brewer spent grain, their good resistance to water erosion and their low thermal conductivity shows that, these composites can be used in the building of individual habitats in the sub-Saharan zone.
Published in | International Journal of Sustainable and Green Energy (Volume 14, Issue 1) |
DOI | 10.11648/j.ijsge.20251401.15 |
Page(s) | 53-65 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Adobes Bricks, Brewer Spent Grain, Clay Material, Thermal Conductibility, Building, Cameroon
Station | Par | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maroua | P (mm) | 0 | 0 | 3.7 | 20.6 | 62.9 | 134.3 | 215.9 | 241.3 | 15.9 | 30.1 | 0.35 | 0 | 866.05 |
T (°C) | 26.9 | 29 | 32.8 | 33 | 33.9 | 30.2 | 28.6 | 27.6 | 28.2 | 29.7 | 29.1 | 27.3 | 30 |
Samples | |||
---|---|---|---|
PSG | PSL | PSE | |
Clay: (<0.002 mm) | 29.5 | 33.6 | 34.8 |
Silt: (0.002-0.02 mm) | 20.9 | 17.1 | 15.1 |
Sand: (0.02-2 mm) | 28.4 | 45.8 | 46.4 |
Gravel: (>2 mm) | 21.2 | 3.5 | 3.7 |
Liquid limit (LL) | 42.6 | 45.7 | 49.8 |
Plastic limit (PL) | 20.7 | 22.1 | 24.4 |
Plastic index (PI) | 21.9 | 21.8 | 25.4 |
SiO2 | 61.28 | 66.35 | 61.23 |
Al2O3 | 15.00 | 12.82 | 12.63 |
Fe2O3 | 7.88 | 5.86 | 7.08 |
Mn2O3 | 0.21 | 0.14 | 0.13 |
MgO | 0.86 | 0.62 | 0.89 |
CaO | 1.59 | 0.92 | 4.06 |
Na2O | 0.48 | 1.00 | 1.01 |
K2O | 2.32 | 4.33 | 3.93 |
TiO2 | 1.23 | 1.17 | 1.22 |
P2O5 | 0.02 | 0.03 | 0.01 |
L.O.I | |||
SiO2/Al2O3 | 4.08 | 5.17 | 4.84 |
PSG | Profil Salak Gakcle |
PSE | Profil Salak Engrenage |
PSL | Katoual |
XRD | X-Ray Diffraction |
IR | Infra-red |
CE | Coefficient of Erosion |
CA | Abrasion Coefficient |
WL | Liquid Limit |
WP | Plastic Limit |
PI | Plasticity Index |
MPa | Mega Pascal |
[1] | P. Doat, A. Hays, H. Houben, S. Matuk, F. Vitoux, Construire en Terre, Editions Alternative et Parallèles, Paris, 1979. |
[2] | M. Ouedraogo, K. Dao, Y. Millogo, J. E. Aubert, A. Messan, M. Seynou, L. Zerbo, M. Gomina, Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw, J. Build. Eng. 23 (2019) 250–258, |
[3] | Emad, Z. Gholamreza, S. Ezzatollah, B. Alireza, Global strategies and potentials. |
[4] | H. Niroumand, M. F. M. Zain, M. Jamil, Various types of earth buildings, Procedia – Soc. Behav. Sci. 89 (2013) 226–230, |
[5] | S. V. Joshi, L. T. Drzal, A. K. Mohanty, S. Arora, Compos. Part A Appl. Sci. Manufacturing 35 (2004) 371–376. |
[6] | D. Shah, Compos. B Eng. 52 (2013) 172–181H. |
[7] | M. Cataldo-Born, G. Araya-Letelier, C. Pabón, Obstacles and motivations for earthbag social housing in Chile: energy, environment, economic and codes implications, Rev. la Construcción. J. Constr. 15(3) (2016) 17–26. |
[8] | S. Deboucha, R. Hashim, A review on bricks and stabilized compressed earth blocks, Sci. Res. Essays 6(3) (2011) 499–506. |
[9] | G. Calatan, A. Hegyi, C. Dico, C. Mircea, Experimental research on the recyclability of the clay material used in the fabrication of adobe bricks type masonry units, Proc. Eng. 181 (2017) 363–369. |
[10] | M. Hall, Y. Djerbib, Rammed earth sample production: context, recommendations and consistency, Constr. Build. Mater. 18(4) (2004) 281–286. |
[11] | S. Yetgin, Ö. Çavdar, A. Çavdar, The effects of the fiber contents on the mechanic properties of the adobes, Constr. Build. Mater. 22(3) (2008) 222–227. |
[12] | M. Ali, A. Alabdulkarem, A. Nuhait, K. Al-Salem, Gino Iannace, R. Almuzaiqer, A. Al-turki, F. Al-Ajlan, Y. Al-Mosabi, A. Al-Sulaimi, Thermal and acoustic characteristics of novel thermal insulating materials made of Eucalyptus Globulus leaves and wheat straw fibers, J. Build. Eng. 32 (November) (2020) 101452, |
[13] | M. Ali, A. Alabdulkarem, On thermal characteristics and microstructure of a new insulation material extracted from date palm trees surface fibers, Constr. Build. Mater. 138(May) (2017) 276–284. |
[14] |
M. Ali, A. Alabdulkarem, A. Nuhait, K. Al-Salem, R. Almuzaiqer, O. Bayaquob, H. Salah, A. Alsaggaf, Z. Algafri, Thermal analyses of loose agave, wheat straw fibers and agave/wheat straw as new hybrid thermal insulating materials for buildings, J. Nat. Fibers (2020),
http://dx.doi.org/10.1080/15440478.2020.1724232 Published online 7 Feb. |
[15] | Mohamed Ali, Microstructure, thermal analysis and acoustic characteristics of calotropis procera (Apple of Sodom) fibers (DOI: 10.1080/ 15440478.2015.1029198), J. Nat. Fibers 13 (June (03)) (2016) 343–352, |
[16] | Y. Elhamdouni, A. Khabbazi, C. Benayad, A. Dadi, O. I. Ahmid, Effect of fiber alfa on thermophysical characteristics of a material based on clay, Energy Procedia 74 (2015) 718–727. |
[17] | M. Ouedraogo, K. Dao, Y. Millogo, M. Seynou, J. E. Aubert, M. Gomina, Influence des fibers de kenaf (Hibiscus altissima) sur les propriétés physiques et mécaniques des adobes, J. Soc. Ouest.-Afr. Chim. 043 (2017) 48–63. |
[18] | Y. Millogo, J. E. Aubert, A. D. Séré, A. Fabbri, J. C. Morel, Earth blocks stabilised by cow-dung, Mater. Struct. 49 (2016) 4583–4594. |
[19] | Y. Millogo, J. C. Morel, J. E. Aubert, K. Ghavami, Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers, Constr. Build. Mater. 52 (2014) 71–78. |
[20] | Marwan, N. Uddin, Effect of banana fibers on the compressive and flexural strength of compressed earth blocks, Buildings 5 (2015) 282–296, |
[21] | B. Sorgho, P. Bressollier, B. Guel, L. Zerbo, R. Ouedraogo, M. Gomina, P. Blanchart, Etude des propriétés et mécaniques des géomateriaux argileux associant la décoction de Parkia Biglobosa (néré), C. R. Chim. xxx (2016) 1–7. |
[22] | H. Bal, Y. Jannot, S. Gaye, F. Demeurie, Measurement and modelisation of the thermal conductivity of a wet composite porous medium: laterite based bricks with millet waste additive, Constr. Build. Mater. 41 (2013) 586–593. |
[23] |
C. Babé, D. Kaoga Kidmo, A. Tom, R. R. Ngono Mvondo, R. Belinga Essama Boum, N. Djongyang, Thermomechanical characterization and durability of adobes reinforced with millet waste fibers (sorghum bicolor),
https://doi.org/10.1016/j.cscm.2020.e00422 Case Studies in Construction Materials 13 (2020) e00422. |
[24] |
S. I. Mussatto, M. Fernandes, G. J. M. Rocha, J. M. Órfão, J. A. Teixeira, I. C. Roberto Production, characterization and application of activated carbon from brewer’s spent grain lignin,
https://doi.org/10.1016/j.biortech.2009.11.025 Bioresource Technology 101 (2010) 2450–2457. |
[25] | S. I. Mussatto, Dragone, G., Roberto, I. C., 2006a. Brewer’s spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43, 1–14. |
[26] | J. B. Suchel, 1972. La répartition des pluies et les régimes pluviométriques au Cameroun. Doc. Géographie tropicale 5 CEGET-CNRS. Talence, 287 p. |
[27] | J. P. Temga, J. Maché, M. Balo, JP . Nguetnkam, D. L Bitom (2019) Ceramics applications of clay in Lake Chad Basin, Central Africa. Appl Clay Sci 171: 118–132H. M. |
[28] | Y. Millogo, J. C. Morel, J. E. Aubert, K. Ghavami, Experimental analysis of pressed adobe blocks reinforced with Hibiscus cannabinus fibers, Constr. Build. Mater. 52 (2014) 71–78. |
[29] | Y. Millogo, J. E. Aubert, D. A. Séré, A. Fabbri, J. C. Morel, Earth blocks stabilized by cow-dung, Mater. Struct. 49 (2016) 4583–4594. |
[30] | K. Dao, M. Ouedraogo, Y. Millogo, J. E. Aubert, M. Gomina, Thermal, hydric and mechanical behaviors of adobes stabilized with cement, Constr. Build Mater. 158 (2018) 84–96. |
[31] | J. Yvon, P. Garin, J. F. Delon, J. M. Cases, Valorisation des argiles kaolinitiques des Charentes dans le caoutchouc naturel, Bull. Minéra 105 (1982) 431–437. |
[32] | B. P. Kagonbe, D. Tsozue, A. N. Nzeukou, S. Ngo Algin, P. Turgut Mineralogical, physico-chemical and ceramic properties of clay materials from Sekande and Gashiga (North, Cameroon) and their suitability in earthenware production |
[33] | X. P. AFNOR, P13-901 ‘‘Blocs de terre comprimée pour murs et cloisons: définitions-Spécifications-Méthodes d’essais-Conditions de réception,” (2001). |
[34] | , D. S. Basga, D. Tsozué, J. P. Temga, J. Balna and J. P. Nguetnkam, "Land use impact on clay dispersion/flocculation in irrigated and flooded Vertisols from Northern Cameroon"! International Soil and Water Conservation Research, (2018) 237-244. |
[35] | S. D. Basga, J. P. Temga, D. Tsozué and A. Gové, Erodibility of Vertisols in relation to agricultural practices along a toposequence in the Logone floodplain Soil and Environment, 39 (2020) 1-12 |
[36] | Richer de Forges, A., Feller, C., Jamagne, M., & Arrouays D. (2008). Perdu dans lestriangles de textures. Etudes et gestion des Sols, 15, 97-111. |
[37] | H. Bamogo, M. Ouedraogo, I. Sanou, K. A. Jérémy, Ouedraogo, K. Dao, J. Aubert, Y. Millogo, Improvement of water resistance and thermal comfort of earth renders by cow dung: an ancestral practice of Burkina Faso, Journal of Cultural Heritage (2020) |
[38] | D. Tsozué, N. A. Nzeukou, J. R. Maché, S. Loweh, N. Fagel, 2017, Mineralogical, physico-chemical and technological characterization of clays from Maroua (Far-North, Cameroon) for use in ceramic bricks production. J Build Eng 11: 17–24. |
[39] | Chahi, A. and Petit D. (2002) Infrared Evidence of a Dioctahedral-Trioctahedral Sites Occupancy in Palygorskite. ClaysandClayMinerals, 50, 306-313. |
[40] | Nguetnkam, J. P., Kamga, R., Villiéras, F., Ekodeck, G. E., Yvon, J., 2008. Assessing the bleaching capacity of some Cameroonian clays on vegetable oils. Appl. Clay Sci. 39, 113–121. |
[41] | Kagonbé, B. P., Tsozué, D., Nzeukou, A. N., Basga, S. D., Belinga, R. E., Likiby, B. and Ngos III, S. (2020a). Suitability of Lateritic Soils from Garoua (North Cameroon) in Compressed Stabilized Earth Blocks Production for Low-Cost Housing Construction. Journal of Materials and Environmental Science, 11, 658-669. |
[42] | Kagonbé, P. B., Tsozué, D., Djépaze, II, Y., Nzeugang, N. A., Balo, M. B., Basga, D. S., & Ngos, III S. (2020b). Physical Characterization and Optimization of Fineness Moduli of Natural Sand from the North Region of Cameroon Used in Construction. Journal of Sustainable Construction Materials and Technologies, 5, 407-419. |
[43] | Tsozué, N. A. Nzeukou, B. Pagna Kagonbé, A. Balo, J. R. Maché . D. L. Bitom, N. Fagel Genesis and assessment of clay materials suitability for earthenware production in northern Cameroon Arabian Journal of Geosciences (2022) 15: 1376 |
[44] | Iyammi, B. M., Tchedele, L. Y., Alarba, S. T. A., Mache, J. R. and Mominou, N. (2023) Physico-Chemical, Mineralogical Characterization, and Ceramic Properties of Clay Materials from South Mindif (Far North, Cameroon). JMSTAdvancesJournal, 5, 13-26. |
[45] | E. Yanné, A. A Oumarou, B. D. Nde, R. Danwe; 2018; Physico-chemical and mineralogical characterization of two clay materials of the far north region of Cameroon (Makabaye, Maroua). Adv Mater Phys Chem 8: 378–386. |
[46] |
. S. Talibi, J. Page, C. Djelal, L. Saadi; Impact of treated red-algae fibers in physic-mechanical behavior of compressed earth brick for construction; European journal of environmental and civil engineering,
https://doi.org/10.1080/19648189 (2024). |
[47] | Laborel-Préneron, J. E. Aubert, C. Magniont, C. Tribout, A. Bertron, Plant aggregates and fibers in earth construction materials: a review, Constr. Build. Mater. 11 (2016) 719–734. |
[48] | H. Omrani, L. Hassini, A. Benazzouk, H. Beji, A. ELCafsi Elaboration and characterization of clay-sand composite based on Juncus acutus fibers, Construction and Building Materials 238 (2020) 117712 |
[49] | P. Zak, T. Ashour, A. Korjenic, S. Korjenic, W. Wu, The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials, Constr. Build. Mater. 106 (2016) 179–188. |
[50] | H. Danso, D. B. Martinson, M. Ali, John B. Williams, Physical, mechanical and durability properties of soil building blocks reinforced with natural fibers, Constr. Build. Mater. 101 (2015) 797–809. |
[51] | A. Laborel-Preneron, C. Magniont, J.-E. Aubert, Hygrothermal properties of unfired earth bricks: effect of barley straw, hemp shiv and corn cob addition, Energy Build. (2018), |
[52] | T. Ashour, A. Korjenic, S. Korjenic, W. Wu, Thermal conductivity of unfired earth bricks reinforced by agricultural waste with cement and gypsum, Energy Build. 135 (2017) 109–118. C. N. |
[53] | H. Bal, Y. Jannot, N. Quenette, A. Chenu, S. Gaye, Water content dependence of the porosity, density and thermal capacity of laterite based bricks with millet waste additive, Constr. Build. Mater. 31 (2012) 144–150. |
[54] | H. Bal, Modélisation et mesure de propriétés thermiques d’un milieu poreux humide: brique de latérite avec gousse de mil, thèse de doctorat de Chekh Anta Diop de Dakar, 2020. |
[55] | Yves Jannot, Métrologie thermique, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée (LEMTA), Centre National de la Recherche Scientifique, Nancy-Université, 2011. |
[56] | G. Minke, Buiding with Earth. Design and Technology of a Sustainable Architecture (Text Book) Birkhaeser, Publishers for Architecture, Basel, Berlin, Boston, ‘2006). |
[57] | P. M. Touré, Vincent Sambou, Mactar Faye, Ababacar Thiam, Mamadou Adj, Dorothé Azilinon, Mechanical and hygrothermal properties of compressedstabilized earth bricks (CSEB), J. Build. Eng. 13 (2017) 266–271. |
[58] | Organisation Régionale Africaine de Normalisation, Ed. Blocs de terre comprimée: norme. Technologie no 11, CDI et CRATerre-EAG, Belgique, mars, (1998). |
[59] | Villamizar, V. S. Araque, C. A. R. Reyes, R. S. Silva, Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks, Constr. Build. Mater. 36 (2012) 276–286, |
[60] |
H. Bamogo, M. Ouedraogo, I. Sanou, K. Amed J. Ouedraogo, K. Dao, J. Aubert, Y. Millogo, Improvement of water resistance and thermal comfort of earth renders by cow dung: an ancestral practice of Burkina Faso, (2020) Elsevier Masson
https://doi.org/10.1016/j.culher.2020.04.009 1296-2074/© SAS. |
APA Style
Djaoyang, V. B., Kaoutoing, M. D., Kagonbé, B. P., Babé, C., Kola, B., et al. (2025). Properties of Adobe Bricks Manufactured from Vertisol Reinforced with Brewer's Spent Grains: Case Study in Sudano Sahelian Region of Cameroon. International Journal of Sustainable and Green Energy, 14(1), 53-65. https://doi.org/10.11648/j.ijsge.20251401.15
ACS Style
Djaoyang, V. B.; Kaoutoing, M. D.; Kagonbé, B. P.; Babé, C.; Kola, B., et al. Properties of Adobe Bricks Manufactured from Vertisol Reinforced with Brewer's Spent Grains: Case Study in Sudano Sahelian Region of Cameroon. Int. J. Sustain. Green Energy 2025, 14(1), 53-65. doi: 10.11648/j.ijsge.20251401.15
AMA Style
Djaoyang VB, Kaoutoing MD, Kagonbé BP, Babé C, Kola B, et al. Properties of Adobe Bricks Manufactured from Vertisol Reinforced with Brewer's Spent Grains: Case Study in Sudano Sahelian Region of Cameroon. Int J Sustain Green Energy. 2025;14(1):53-65. doi: 10.11648/j.ijsge.20251401.15
@article{10.11648/j.ijsge.20251401.15, author = {Viviane Bakaïné Djaoyang and Maxime Dawoua Kaoutoing and Bertin Pagna Kagonbé and Colbert Babé and Bernard Kola and Noël Djongyang}, title = {Properties of Adobe Bricks Manufactured from Vertisol Reinforced with Brewer's Spent Grains: Case Study in Sudano Sahelian Region of Cameroon }, journal = {International Journal of Sustainable and Green Energy}, volume = {14}, number = {1}, pages = {53-65}, doi = {10.11648/j.ijsge.20251401.15}, url = {https://doi.org/10.11648/j.ijsge.20251401.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijsge.20251401.15}, abstract = {This paper presents the results of an investigation in establishing the physical and mechanical properties of brewer spent grain which have been used in the fabrication of Adobe. The earth block reinforced 2. 4. 6. 8 and 10 percent of brewer spent grain. The characteristics of raw material were investigated using X-ray diffraction (XRD) and FTIR analysis spectra show kaolinite, smectite and quartz. The clay materials are mainly composed of silica SiO2 and alumina Al2O3 and these two oxides. The blocks, after 21 days of curing were tested for density, water absorption, compressive strength, tensile strength, and erosion resistance. It was found that the brewer's spent grain content slightly improved the blocks’ density. The linear shrinkage decreases with brewer-spent grain additions from 0 - 10% allowing in 53%. The thermal conductivity decreases when the brewer spent grain the content of 60% is observed for the adobe containing 10 wt% brewer spent grain. The good compressive strength of the adobes incorporating brewer spent grain, their good resistance to water erosion and their low thermal conductivity shows that, these composites can be used in the building of individual habitats in the sub-Saharan zone. }, year = {2025} }
TY - JOUR T1 - Properties of Adobe Bricks Manufactured from Vertisol Reinforced with Brewer's Spent Grains: Case Study in Sudano Sahelian Region of Cameroon AU - Viviane Bakaïné Djaoyang AU - Maxime Dawoua Kaoutoing AU - Bertin Pagna Kagonbé AU - Colbert Babé AU - Bernard Kola AU - Noël Djongyang Y1 - 2025/02/21 PY - 2025 N1 - https://doi.org/10.11648/j.ijsge.20251401.15 DO - 10.11648/j.ijsge.20251401.15 T2 - International Journal of Sustainable and Green Energy JF - International Journal of Sustainable and Green Energy JO - International Journal of Sustainable and Green Energy SP - 53 EP - 65 PB - Science Publishing Group SN - 2575-1549 UR - https://doi.org/10.11648/j.ijsge.20251401.15 AB - This paper presents the results of an investigation in establishing the physical and mechanical properties of brewer spent grain which have been used in the fabrication of Adobe. The earth block reinforced 2. 4. 6. 8 and 10 percent of brewer spent grain. The characteristics of raw material were investigated using X-ray diffraction (XRD) and FTIR analysis spectra show kaolinite, smectite and quartz. The clay materials are mainly composed of silica SiO2 and alumina Al2O3 and these two oxides. The blocks, after 21 days of curing were tested for density, water absorption, compressive strength, tensile strength, and erosion resistance. It was found that the brewer's spent grain content slightly improved the blocks’ density. The linear shrinkage decreases with brewer-spent grain additions from 0 - 10% allowing in 53%. The thermal conductivity decreases when the brewer spent grain the content of 60% is observed for the adobe containing 10 wt% brewer spent grain. The good compressive strength of the adobes incorporating brewer spent grain, their good resistance to water erosion and their low thermal conductivity shows that, these composites can be used in the building of individual habitats in the sub-Saharan zone. VL - 14 IS - 1 ER -