We prove that rank-zero elliptic curves over generate positive-rank elliptic curves through the unit circle, via quadratic twisted models . This construction demonstrates rank evolution from zero to infinite rational points, complementing high-rank families. All rank-zero status and positive-rank emergence rigorously verified computationally. SMC(2020): 11G05, 14H52, 11Y50.
| Published in | Pure and Applied Mathematics Journal (Volume 15, Issue 1) |
| DOI | 10.11648/j.pamj.20261501.11 |
| Page(s) | 1-5 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2026. Published by Science Publishing Group |
Elliptic Curves, Mordell-Weil Rank, Rank-zero, Congruent Numbers, Rank Lifting, Unit Circle (Parametrizatation)
| [1] | L. Mordell, On the rational solutions of the indeterminate equation y2 - k = x2, Proceedings of the London Mathematical Society, 1922. |
| [2] | J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer, 1986. |
| [3] | Swinnerton-Dyer, H. P. F., and Birch, B. J. “Notes on elliptic curves. I..” Journal für die reine und angewandte Mathematik 212 (1963): 7-25. |
| [4] | Swinnerton-Dyer, H. P. F., and Birch, B. J. “Notes on elliptic curves. II..” Journal f¨ur die reine und angewandte Mathematik 218 (1965): 79-108. |
| [5] | N. Elkies, Curves of high rank with a point of order 2, International Congress of Mathematicians, 2006. |
| [6] | N. D. Elkies, Three lectures on elliptic surfaces and curves of high rank, arXiv. 0709 [math. NT] 18 sep 2007. |
| [7] | N. D. Elkies and Z. Klagsbrun, New rank records for elliptic curves having rational torsion, The Open Book Series 4 (2020) Fourteenth Algorithmic Number Theory Symposium. |
| [8] | J. -F. Mestre,Construction de courbes elliptiques de rang ≥ 11, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 13–16. |
| [9] |
A. Dujella, Construction of high rank elliptic curves, preprint 2007,
https://web.math.pmf.unizg.hr/˜ duje/pdf/DujellaPeralConstruction.pdf |
| [10] | O. Lecacheux, Familles de courbes elliptiques à rang é levé sur ℚ(t), J. Théorie des Nombres Bordeaux, 12(1), 2000, 245–259. |
| [11] | K. K. Vincent and S. K. Fousséni, Two Parametric Families of Congruent Numbers From Elliptic Curves With Quadratic Point Imposition, JP Journal of Algebra, Number Theory and Applications, 64(6), 2025, 777-790. |
| [12] | J. B. Tunnell, A classical diophantine problem and modular forms of weight 3/2, Inventiones Mathematicae 72 (1983), 323-334 |
| [13] | J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, GTM 106, 2009. |
| [14] | P. Khanra, The Congruent Number Problem and its Connection with Elliptic Curves, ResearchGate F eb. 2024, |
| [15] | J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1997. |
| [16] | J. Coates and A. Wiles, On the Conjecture of Birch and Swinnerton-Dyer. Inventiones mathematicae, 1987. |
| [17] | N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics, Vol. 97, Springer-Verlag, 1993. |
| [18] | SageMath 9.3, Available online at: |
APA Style
Vincent, K. K., Fousséni, S. K. (2026). Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists. Pure and Applied Mathematics Journal, 15(1), 1-5. https://doi.org/10.11648/j.pamj.20261501.11
ACS Style
Vincent, K. K.; Fousséni, S. K. Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists. Pure Appl. Math. J. 2026, 15(1), 1-5. doi: 10.11648/j.pamj.20261501.11
@article{10.11648/j.pamj.20261501.11,
author = {Kouakou Kouassi Vincent and Soro Kolo Fousséni},
title = {Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists
},
journal = {Pure and Applied Mathematics Journal},
volume = {15},
number = {1},
pages = {1-5},
doi = {10.11648/j.pamj.20261501.11},
url = {https://doi.org/10.11648/j.pamj.20261501.11},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20261501.11},
abstract = {We prove that rank-zero elliptic curves over generate positive-rank elliptic curves through the unit circle, via quadratic twisted models . This construction demonstrates rank evolution from zero to infinite rational points, complementing high-rank families. All rank-zero status and positive-rank emergence rigorously verified computationally. SMC(2020): 11G05, 14H52, 11Y50.
},
year = {2026}
}
TY - JOUR T1 - Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists AU - Kouakou Kouassi Vincent AU - Soro Kolo Fousséni Y1 - 2026/01/16 PY - 2026 N1 - https://doi.org/10.11648/j.pamj.20261501.11 DO - 10.11648/j.pamj.20261501.11 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 1 EP - 5 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20261501.11 AB - We prove that rank-zero elliptic curves over generate positive-rank elliptic curves through the unit circle, via quadratic twisted models . This construction demonstrates rank evolution from zero to infinite rational points, complementing high-rank families. All rank-zero status and positive-rank emergence rigorously verified computationally. SMC(2020): 11G05, 14H52, 11Y50. VL - 15 IS - 1 ER -