| Peer-Reviewed

Enhanced Electro-optical Properties of Low Viscous Nematic Liquid Crystal Doped with Mixed Phase Anatase/Rutile TiO2 Nanoparticles for Display Applications

Received: 13 June 2021     Accepted: 28 June 2021     Published: 6 July 2021
Views:       Downloads:
Abstract

Organic–inorganic composite based on liquid crystalline and TiO2 nanoparticles were obtained and investigated taking into account the crystallographic form of TiO2 i.e., anatase/rutile mixed phase. TiO2 is an important class of material having various dielectric and electro-optical properties. The existent research presents the electro-optical properties of nematic liquid crystal (NLC) E204 and TiO2 nanocomposites over an extensive range of frequencies. Various important display parameters such as response time, threshold voltage, pretilt angle and activation energy of pristine as well as TiO2 doped composites systems were measured and analyzed. In comparison with the pure, TiO2-doped composite systems has approximately 50% faster response time, owing to its remarkable decline in the relaxation time and activation energy of the LCs. The alteration in the optical intensity of the NLC composites as a function of the concentration of TiO2 nanoparticles (NPs) was also examined. It was established that the optical intensity in nano-nematic composites was decreasing with the concentration of TiO2 NPs. Also, it was observed that an escalation in the TiO2 NPs concentration in NLC composites indicates to an escalation in the birefringence. Probable mechanisms of the interactivity between NLC molecules and TiO2 NPs have been discussed. The current work shows that the TiO2 NPs doping has an encouraging application in the display devices, including other electro-optical as well as photonic applications.

Published in World Journal of Applied Chemistry (Volume 6, Issue 3)
DOI 10.11648/j.wjac.20210603.11
Page(s) 25-35
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Liquid Crystal, Response Time, Pretilt Angle, Threshold Voltage, Birefringence, Activation Energy

References
[1] D.-K. Yang, Wu, Shin-Tson, Wiley series in display technology 1 (2014) 259.
[2] E. Ouskova, O. Buchnev, V. Reshetnyak, Y. Reznikov, H. Kresse, Liquid Crystals 30 (2003) 1235.
[3] R. Basu, G. S. Iannacchione, Journal of Applied Physics 106 (2009) 124312.
[4] Neeraj, K. K. Raina, Phase Transitions 83 (2010) 615.
[5] S. W. Lee, C. Mao, C. E. Flynn, A. M. Belcher, Science 296 (2002) 892.
[6] M. Tamborra, M. Striccoli, R. Comparelli, M. L. Curri, A. Petrella, A. Agostiano, Nanotechnology 15 (2004) S240.
[7] E. Kikuchi, S. Kitada, A. Ohno, S. Aramaki, S. Maenosono, Applied Physics Letters 92 (2008) 173307.
[8] A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, W. Haase, Applied Physics Letters 95 (2009) 023117.
[9] H. Qi, T. Hegmann, Journal of Materials Chemistry 16 (2006) 4197.
[10] J. Prakash, A. Choudhary, A. Kumar, D. S. Mehta, A. M. Biradar, Applied Physics Letters 93 (2008) 112904.
[11] D. N. Chausov, A. D. Kurilov, R. N. Kucherov, A. V. Simakin, S. V. Gudkov, Journal of Physics: Condensed Matter 32 (2020) 395102.
[12] R. Bitar, G. Agez, M. Mitov, Soft Matter 7 (2011) 8198.
[13] A. Roy, B. P. Singh, G. Yadav, H. Khan, S. Kumar, A. Srivastava, R. Manohar, Journal of Molecular Liquids 295 (2019) 111872.
[14] B. P. Singh, S. Sikarwar, K. Agrahari, S. Tripathi, R. K. Gangwar, R. Manohar, K. K. Pandey, Journal of Molecular Liquids 325 (2021) 115172.
[15] M. Middha, R. Kumar, K. K. Raina, Liquid Crystals 43 (2016) 1002.
[16] S.-Y. Huang, C.-C. Peng, L.-W. Tu, C.-T. Kuo, Molecular Crystals and Liquid Crystals 507 (2009) 301.
[17] D. K. Pandey, U. B. Singh, R. Dhar, R. Dabrowski, M. B. Pandey, Phase Transitions 92 (2019) 931.
[18] X. Li, C. Yang, Q. Wang, D. Jia, L. Hu, Z. Peng, L. Xuan, Optics Communications 286 (2013) 224.
[19] U. B. Singh, R. Dhar, R. Dabrowski, M. B. Pandey, Liquid Crystals 40 (2013) 774.
[20] F. Simoni, O. Francescangeli, Y. Reznikov, S. Slussarenko, Optics Letters 22 (1997) 549.
[21] C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, A. Y. Fuh, Phys Rev E Stat Nonlin Soft Matter Phys 69 (2004) 031704.
[22] L. C. Lin, H. C. Jau, T. H. Lin, A. Y. Fuh, Opt Express 15 (2007) 2900.
[23] C. J. Hsu, B. P. Singh, M. Antony, P. Selvaraj, R. Manohar, C. Y. Huang, Optics Express 28 (2020) 22856.
[24] B. P. Singh, C.-Y. Huang, D. P. Singh, P. Palani, B. Duponchel, M. Sah, R. Manohar, K. K. Pandey, Journal of Molecular Liquids 325 (2021) 115130.
[25] C.-Y. Tang, S.-M. Huang, W. Lee, Journal of Physics D: Applied Physics 44 (2011) 355102.
[26] F.-C. Lin, P.-C. Wu, B.-R. Jian, W. Lee, Advances in Condensed Matter Physics 2013 (2013) 271574.
[27] J. Mirzaei, M. Urbanski, K. Yu, H.-S. Kitzerow, T. Hegmann, Journal of Materials Chemistry 21 (2011) 12710.
[28] A. Kumar, J. Prakash, A. D. Deshmukh, D. Haranath, P. Silotia, A. M. Biradar, Applied Physics Letters 100 (2012) 134101.
[29] H. Qi, T. Hegmann, Journal of Materials Chemistry 18 (2008) 3288.
[30] C.-Y. Huang, C.-Y. Hu, H.-C. Pan, K.-Y. Lo, Japanese Journal of Applied Physics 44 (2005) 8077.
[31] B. Coşkun, Journal of Molecular Structure 1191 (2019) 278.
[32] H.-M. Huang, E.-Y. Chuang, F.-L. Chen, J.-D. Lin, Y.-C. Hsiao, Polymers 12 (2020) 2294.
[33] I. Khoo, K. Chen, Y. Z. Williams, IEEE Journal of Selected Topics in Quantum Electronics 12 (2006) 443.
[34] P. Malik, A. Chaudhary, R. Mehra, K. K. Raina, Advances in Condensed Matter Physics 2012 (2012) 853160.
[35] X. Lu, H. Zhang, G. Fei, B. Yu, X. Tong, H. Xia, Y. Zhao, Advanced Materials 30 (2018) 1706597.
[36] T. A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann, Photochemical & Photobiological Sciences 12 (2013) 602.
[37] J. S. Roy, T. Pal Majumder, R. Dabrowski, Journal of Molecular Structure 1098 (2015) 351.
[38] C. Y. Huang, P. Selvaraj, G. Senguttuvan, C. J. Hsu, Journal of Molecular Liquids 286 (2019) 110902.
[39] P.-C. Wu, S.-Y. Yang, W. Lee, Journal of Molecular Liquids 218 (2016) 150.
[40] H. Ayeb, S. Alaya, M. Derbali, L. Samet, J. Bennaceur, F. Jomni, T. Soltani, Liquid Crystals 48 (2021) 223.
[41] M. A. Mohamed, W. Salleh, J. Jaafar, N. Yusof, 2014.
[42] A. V. Ivashchenko, Dichroic dyes for liquid crystal displays. CRC Press, 1994.
[43] J. Y. Kim, H. S. Jung, J. H. No, J.-R. Kim, K. S. Hong, Journal of electroceramics 16 (2006) 447.
[44] K. H. Chen, W. Y. Chang, J. H. Chen, Opt Express 17 (2009) 14143.
[45] M. Schadt, Annu. Rev. Mater. Sci. 27 (1997) 305.
[46] B. P. Singh, G. Pathak, A. Roy, G. Hegde, P. K. Tripathi, A. Srivastava, R. Manohar, Liquid Crystals 46 (2019) 1808.
[47] D. Pauluth, K. Tarumi, Journal of Materials Chemistry 14 (2004) 1219.
[48] H. K. Shin, J.-H. Seo, T.-H. Yoon, J. C. Kim, H. S. Woo, S. T. Shin, Japanese Journal of Applied Physics 48 (2009) 111502.
[49] S.-W. Liao, C.-T. Hsieh, C.-C. Kuo, C.-Y. Huang, Applied Physics Letters 101 (2012) 161906.
[50] S. C. Jeng, S. J. Hwang, C. Y. Yang, Opt Lett 34 (2009) 455.
[51] Y. S. Ha, H. J. Kim, H. G. Park, D. S. Seo, Opt Express 20 (2012) 6448.
[52] M. Bharath Kumar, M. Awwal Adeshina, D. Kang, Y. Jee, T. Kim, M. Choi, J. Park, Nanomaterials (Basel) 10 (2020).
[53] S. Ishihara, M. Mizusaki, Journal of the Society for Information Display 28 (2020) 44.
Cite This Article
  • APA Style

    Bhupendra Pratap Singh, Samiksha Sikarwar, Abhishek Kumar Misra, Pankaj Kumar Tripathi, Atul Kumar Srivastava, et al. (2021). Enhanced Electro-optical Properties of Low Viscous Nematic Liquid Crystal Doped with Mixed Phase Anatase/Rutile TiO2 Nanoparticles for Display Applications. World Journal of Applied Chemistry, 6(3), 25-35. https://doi.org/10.11648/j.wjac.20210603.11

    Copy | Download

    ACS Style

    Bhupendra Pratap Singh; Samiksha Sikarwar; Abhishek Kumar Misra; Pankaj Kumar Tripathi; Atul Kumar Srivastava, et al. Enhanced Electro-optical Properties of Low Viscous Nematic Liquid Crystal Doped with Mixed Phase Anatase/Rutile TiO2 Nanoparticles for Display Applications. World J. Appl. Chem. 2021, 6(3), 25-35. doi: 10.11648/j.wjac.20210603.11

    Copy | Download

    AMA Style

    Bhupendra Pratap Singh, Samiksha Sikarwar, Abhishek Kumar Misra, Pankaj Kumar Tripathi, Atul Kumar Srivastava, et al. Enhanced Electro-optical Properties of Low Viscous Nematic Liquid Crystal Doped with Mixed Phase Anatase/Rutile TiO2 Nanoparticles for Display Applications. World J Appl Chem. 2021;6(3):25-35. doi: 10.11648/j.wjac.20210603.11

    Copy | Download

  • @article{10.11648/j.wjac.20210603.11,
      author = {Bhupendra Pratap Singh and Samiksha Sikarwar and Abhishek Kumar Misra and Pankaj Kumar Tripathi and Atul Kumar Srivastava and Meeta Sah and Rajiv Manohar and Kamal Kumar Pandey},
      title = {Enhanced Electro-optical Properties of Low Viscous Nematic Liquid Crystal Doped with Mixed Phase Anatase/Rutile TiO2 Nanoparticles for Display Applications},
      journal = {World Journal of Applied Chemistry},
      volume = {6},
      number = {3},
      pages = {25-35},
      doi = {10.11648/j.wjac.20210603.11},
      url = {https://doi.org/10.11648/j.wjac.20210603.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjac.20210603.11},
      abstract = {Organic–inorganic composite based on liquid crystalline and TiO2 nanoparticles were obtained and investigated taking into account the crystallographic form of TiO2 i.e., anatase/rutile mixed phase. TiO2 is an important class of material having various dielectric and electro-optical properties. The existent research presents the electro-optical properties of nematic liquid crystal (NLC) E204 and TiO2 nanocomposites over an extensive range of frequencies. Various important display parameters such as response time, threshold voltage, pretilt angle and activation energy of pristine as well as TiO2 doped composites systems were measured and analyzed. In comparison with the pure, TiO2-doped composite systems has approximately 50% faster response time, owing to its remarkable decline in the relaxation time and activation energy of the LCs. The alteration in the optical intensity of the NLC composites as a function of the concentration of TiO2 nanoparticles (NPs) was also examined. It was established that the optical intensity in nano-nematic composites was decreasing with the concentration of TiO2 NPs. Also, it was observed that an escalation in the TiO2 NPs concentration in NLC composites indicates to an escalation in the birefringence. Probable mechanisms of the interactivity between NLC molecules and TiO2 NPs have been discussed. The current work shows that the TiO2 NPs doping has an encouraging application in the display devices, including other electro-optical as well as photonic applications.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Enhanced Electro-optical Properties of Low Viscous Nematic Liquid Crystal Doped with Mixed Phase Anatase/Rutile TiO2 Nanoparticles for Display Applications
    AU  - Bhupendra Pratap Singh
    AU  - Samiksha Sikarwar
    AU  - Abhishek Kumar Misra
    AU  - Pankaj Kumar Tripathi
    AU  - Atul Kumar Srivastava
    AU  - Meeta Sah
    AU  - Rajiv Manohar
    AU  - Kamal Kumar Pandey
    Y1  - 2021/07/06
    PY  - 2021
    N1  - https://doi.org/10.11648/j.wjac.20210603.11
    DO  - 10.11648/j.wjac.20210603.11
    T2  - World Journal of Applied Chemistry
    JF  - World Journal of Applied Chemistry
    JO  - World Journal of Applied Chemistry
    SP  - 25
    EP  - 35
    PB  - Science Publishing Group
    SN  - 2637-5982
    UR  - https://doi.org/10.11648/j.wjac.20210603.11
    AB  - Organic–inorganic composite based on liquid crystalline and TiO2 nanoparticles were obtained and investigated taking into account the crystallographic form of TiO2 i.e., anatase/rutile mixed phase. TiO2 is an important class of material having various dielectric and electro-optical properties. The existent research presents the electro-optical properties of nematic liquid crystal (NLC) E204 and TiO2 nanocomposites over an extensive range of frequencies. Various important display parameters such as response time, threshold voltage, pretilt angle and activation energy of pristine as well as TiO2 doped composites systems were measured and analyzed. In comparison with the pure, TiO2-doped composite systems has approximately 50% faster response time, owing to its remarkable decline in the relaxation time and activation energy of the LCs. The alteration in the optical intensity of the NLC composites as a function of the concentration of TiO2 nanoparticles (NPs) was also examined. It was established that the optical intensity in nano-nematic composites was decreasing with the concentration of TiO2 NPs. Also, it was observed that an escalation in the TiO2 NPs concentration in NLC composites indicates to an escalation in the birefringence. Probable mechanisms of the interactivity between NLC molecules and TiO2 NPs have been discussed. The current work shows that the TiO2 NPs doping has an encouraging application in the display devices, including other electro-optical as well as photonic applications.
    VL  - 6
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, India

  • Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, India

  • Department of Physics, Government Vishwanath Yadav Tamaskar Post-Graduate Autonomous College, Durg, Chhattisgarh, India

  • Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, India

  • Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, India

  • Shri Jai Narain Misra Post-Graduate College (KKC), Charbagh, Lucknow, India

  • Liquid Crystal Research Lab, Department of Physics, University of Lucknow, Lucknow, India

  • Shri Jai Narain Misra Post-Graduate College (KKC), Charbagh, Lucknow, India

  • Sections