| Peer-Reviewed

Investigation of Mixed Transition Effect in MnO2 AND V2O5 Doped Ternary Borate Glass System

Received: 1 October 2022    Accepted: 17 October 2022    Published: 29 October 2022
Views:       Downloads:
Abstract

A novel ternary borate glass system was synthesized by utilizing standard melt quench approach. All of the samples went through an annealing process for 6 hours to remove retained thermal strains present in glass structure. XRD test revealed that the samples were indeed glassy. Density was determined at room temperature; oxygen packing density (OPD) and molar volumes were calculated. Both density and OPD changes followed recognizable patterns that complemented the Mixed Transition Effect (MTE). The electrical resistivity was measured by Keithley two probe instrument in range of temperatures 308-523K and conductivity was estimated. These glasses are unique among single TMI doped glasses systems in that they have exceptionally high conductivities in 10-5 to 10-3m)-1 range, while still maintaining low activation energies. The conductivity data was analyzed through Motts small polaron hopping (SPH) model at higher temperature region T > θD/2 and remaining data was analyzed by employing the VRH models by Mott’s, Mott-Greave’s at lower temperature region T < θD/2. Respective polaron related parameters such as small polaron radii, the average distance between transition metal ions, TMI density, mobility etc. were estimated. The very first time, by using a MnO2-V2O5 dopant ternary borate glasses have been synthesized. Studies on high-and low temperature DC conductivity investigations have revealed the presence of a mixed transition effect (MTE).

Published in American Journal of Physics and Applications (Volume 10, Issue 5)
DOI 10.11648/j.ajpa.20221005.11
Page(s) 62-71
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Borate Glasses, TMI, Mott's SPH Model, Mixed Transition Effect (MTE), DC Conductivity

References
[1] L. D. Pye, Borate Glasses, Springer US, Springer US, Boston, MA, 2012. https://doi.org/10.1007/978-1-4684-3357-9.
[2] V. P. Singh, N. M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: Comparative study, J Non Cryst Solids. 404 (2014) 167–173. https://doi.org/10.1016/J.JNONCRYSOL.2014.08.003.
[3] M. S. Hasan, U. Werner-Zwanziger, D. Boyd, Composition-structure-properties relationship of strontium borate glasses for medical applications, J Biomed Mater Res A. 103 (2015) 2344–2354. https://doi.org/10.1002/JBM.A.35361.
[4] M. Bengisu, Borate glasses for scientific and industrial applications: a review, Journal of Materials Science 2015 51: 5. 51 (2015) 2199–2242. https://doi.org/10.1007/S10853-015-9537-4.
[5] I. G. Austin, M. Sayer, Hopping conduction at high electric fields in transition metal ion glasses, Journal of Physics C: Solid State Physics. 7 (1974) 905. https://doi.org/10.1088/0022-3719/7/5/013.
[6] I. G. Austin, N. F. Mott, Metallic and nonmetallic behavior in transition metal oxides, Science (1979). 168 (1970) 71–77. https://doi.org/10.1126/SCIENCE.168.3927.71/ASSET/CC75CA72-79A2-4C36-BEAB-49A0C8C07E5B/ASSETS/SCIENCE.168.3927.71.FP.PNG.
[7] I. G. Austin, N. F. Mott, Polarons in crystalline and non-crystalline materials, Https://Doi.Org/10.1080/00018736900101267. 18 (2006) 41–102. https://doi.org/10.1080/00018736900101267.
[8] A. S. Abouhaswa, Y. S. Rammah, G. M. Turky, Characterization of zinc lead-borate glasses doped with Fe3+ ions: optical, dielectric, and ac-conductivity investigations, Journal of Materials Science: Materials in Electronics. 31 (2020) 17044–17054. https://doi.org/10.1007/S10854-020-04262-1.
[9] M. P. Kumar, T. Sankarappa, A. M. Awasthi, Thermal and electrical properties of some single and mixed transition-metal ions-doped tellurite glasses, Physica B Condens Matter. 403 (2008) 4088–4095. https://doi.org/10.1016/J.PHYSB.2008.08.012.
[10] J. S. Ashwajeet, T. Sankarappa, R. Ramanna, T. Sujatha, Study of polaron transport mechanisms in two transition metal ions doped borophosphate glasses, Glass Physics and Chemistry 2016 42: 1. 42 (2016) 27–32. https://doi.org/10.1134/S1087659616010028.
[11] G. Rajashekara, J. Sangamesh, B. Arunkumar, N. Nagaraja, M. Prashant Kumar, Anomalous DC electrical conductivity in mixed transition metal ions doped borate glasses, J Non Cryst Solids. 481 (2018) 289–294. https://doi.org/10.1016/J.JNONCRYSOL.2017.10.056.
[12] A. S. Das, M. Roy, D. Biswas, R. Kundu, A. Acharya, D. Roy, S. Bhattacharya, Ac conductivity of transition metal oxide doped glassy nanocomposite systems: temperature and frequency dependency, Mater Res Express. 5 (2018) 095201. https://doi.org/10.1088/2053-1591/AAD43E.
[13] K. SEGA, Y. KURODA, K. SEGA, D. c. conductivity of V2O5–MnO–TeO2 glasses, J Mater Sci. 33 (1998) 1303–1308. https://doi.org/10.1023/A:1004302431797.
[14] D. Biswas, A. S. Das, R. Mondal, A. Banerjee, A. Dutta, S. Kabi, D. Roy, L. S. Singh, Structural properties and electrical conductivity mechanisms of semiconducting quaternary nanocomposites: Effect of two transition metal oxides, Journal of Physics and Chemistry of Solids. 144 (2020) 109505. https://doi.org/10.1016/J.JPCS.2020.109505.
[15] G. El-Damrawi, A. M. Abdelghany, A. K. Hassan, B. Faroun, Conductivity and morphological studies on iron borosilicate glasses, J Non Cryst Solids. 545 (2020) 120233. https://doi.org/10.1016/J.JNONCRYSOL.2020.120233.
[16] L. Murawski, C. H. Chung, J. D. Mackenzie, Electrical properties of semiconducting oxide glasses, J Non Cryst Solids. 32 (1979) 91–104. https://doi.org/10.1016/0022-3093(79)90066-8.
[17] R. Hisam, A. K. Yahya, H. M. Kamari, Z. A. Talib, R. H. Y. Subban, Anomalous dielectric constant and AC conductivity in mixed transition-metal-ion xFe2O3–(20−x)MnO2–80TeO2 glass system, Materials Express. 6 (2016) 149–160. https://doi.org/10.1166/MEX.2016.1286.
[18] M. G. Moustafa, Electrical transport properties and conduction mechanisms of semiconducting iron bismuth glasses, Ceram Int. 42 (2016) 17723–17730. https://doi.org/10.1016/J.CERAMINT.2016.08.097.
[19] T. Sankarappa, M. P. Kumar, G. B. Devidas, N. Nagaraja, R. Ramakrishnareddy, AC conductivity and dielectric studies in V2O5–TeO2 and V2O5–CoO–TeO2 glasses, J Mol Struct. 889 (2008) 308–315. https://doi.org/10.1016/J.MOLSTRUC.2008.02.009.
[20] H. HIRASHIMA, K. NISHII, T. YOSHIDA, Electrical Conductivity of TiO2-V2O5-P2O5 Glasses, Journal of the American Ceramic Society. 66 (1983) 704–708. https://doi.org/10.1111/J.1151-2916.1983.TB10533.X.
[21] R. Punia, R. S. Kundu, S. Murugavel, N. Kishore, Hopping conduction in bismuth modified zinc vanadate glasses: An applicability of Mott’s model, J Appl Phys. 112 (2012) 113716. https://doi.org/10.1063/1.4768898.
[22] A. Gaddam, A. R. Allu, H. R. Fernandes, G. E. Stan, C. C. Negrila, A. P. Jamale, F. O. Méar, L. Montagne, J. M. F. Ferreira, Role of vanadium oxide on the lithium silicate glass structure and properties, Journal of the American Ceramic Society. 104 (2021) 2495–2505. https://doi.org/10.1111/JACE.17671.
[23] S. Das, A. Madheshiya, M. Ghosh, K. K. Dey, S. S. Gautam, J. Singh, R. Mishra, C. Gautam, Structural, optical, and nuclear magnetic resonance studies of V2O5-doped lead calcium titanate borosilicate glasses, Journal of Physics and Chemistry of Solids. 126 (2019) 17–26. https://doi.org/10.1016/J.JPCS.2018.10.030.
[24] D. B. Sable, P. P. Khirade, S. D. Birajdar, A. A. Pandit, K. M. Jadhav, Effect of iron oxide (Fe2O3) on the structural, optical, electrical, and dielectric properties of SrO–V2O5 glasses, Glass Physics and Chemistry 2017 43: 4. 43 (2017) 302–312. https://doi.org/10.1134/S1087659617040149.
[25] J. Khajonrit, A. Montreeuppathum, P. Kidkhunthod, N. Chanlek, Y. Poo-arporn, S. Pinitsoontorn, S. Maensiri, New transparent materials for applications as supercapacitors: Manganese-lithium-borate glasses, J Alloys Compd. 763 (2018) 199–208. https://doi.org/10.1016/J.JALLCOM.2018.05.300.
[26] P. Butnoi, N. Chanlek, Y. Poo-arporn, S. Pinitsoontorn, S. Maensiri, P. Kidkhunthod, Structure-function of novel glasses for possibility as cathode of Li-ion battery: Lithium manganese borate glasses, J Alloys Compd. 809 (2019) 151811. https://doi.org/10.1016/J.JALLCOM.2019.151811.
[27] Z. S. Iro, C. Subramani, S. S. Dash, ELECTROCHEMICAL SCIENCE A Brief Review on Electrode Materials for Supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50.
[28] M. Pal, B. Roy, M. Pal, Structural Characterization of Borate Glasses Containing Zinc and Manganese Oxides, Journal of Modern Physics. 02 (2011) 1062–1066. https://doi.org/10.4236/JMP.2011.29129.
[29] U. Nissar, J. Ahmad, A. M. Rana, S. H. Bukhari, M. T. Jamil, J. A. Khan, R. Shakeel, M. Y. Nadeem, Electrical Characteristics of MnO2 Doped Bismuth Borate Glass Systems, J Electron Mater. 47 (2018) 1421–1430. https://doi.org/10.1007/S11664-017-5943-5.
[30] V. Vamsi Priya, G. Upender, M. Prasad, FTIR and ESR studies of VO2+ and MN2+ doped glasses of system 59B2O3-10As2O3-(30 - X)PbO-xBaO, Glass Physics and Chemistry. 40 (2014) 144–150. https://doi.org/10.1134/S1087659614020230.
[31] B. Tirumala Rao, S. Cole, Physical and spectroscopic studies on manganese doped zinc alumino lithium borate glasses, Mater Today Proc. 5 (2018) 25815–25822. https://doi.org/10.1016/j.matpr.2018.06.574.
[32] V. Babu, M. Vema, S. Boddu, K. Vijaya Babu, V. Madhuri, B. Suresh, Investigations on Spectroscopic Properties of Manganese Ions in Sodium Lead Alumino Borate Glasses, (2020). https://doi.org/10.21203/rs.3.rs-49497/v1.
[33] J. Ashwajeet, T. Sankarappa, … R. R.-G. P. and, undefined 2016, Study of polaron transport mechanisms in two transition metal ions doped borophosphate glasses, Springer. 42 (2016) 27–32. https://doi.org/10.1134/S1087659616010028.
[34] G. P. Singh, P. Kaur, S. Kaur, D. P. Singh, ROLE OF V 2 O 5 IN STRUCTURAL PROPERTIES OF V 2 O 5-MnO 2-PbO-B 2 O 3 GLASSES, Materials Physics and Mechanics. (2011) 58–63.
[35] V. Kundu, R. L. Dhiman, D. Goyal, D. R. Goyal, A. S. Maan, Physical and electrical properties of semiconducting Fe 2 O 3-V 2 O 5-B 2 O 3 glasses, OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS. 2 (2008) 428–432. https://www.researchgate.net/publication/264976287 (accessed August 25, 2022).
[36] M. R. Ahmed, K. C. Sekhar, S. Ahammed, V. Sathe, Z. A. Alrowaili, M. Amami, I. O. Olarinoye, M. S. Al-Buriahi, B. T. Tonguc, M. Shareefuddin, Synthesis, physical, optical, structural and radiation shielding characterization of borate glasses: A focus on the role of SrO/Al2O3 substitution, Ceram Int. 48 (2022) 2124–2137. https://doi.org/10.1016/J.CERAMINT.2021.09.301.
[37] S. Thirumaran, N. Karthikeyan, Structural Elucidation of Some Borate Glass Specimen by Employing Ultrasonic and Spectroscopic Studies, Journal of Ceramics. 2013 (2013). https://doi.org/10.1155/2013/485317.
[38] C. S. Phani Kumar, L. Srinivasa Rao, K. Aruna Prabha, P. Raghavendra Rao, Effect of zirconium oxide nanoparticles on physical, structural and magnetic properties of Bi2O3-B2O3-MnO2 glasses, Ceram Int. 46 (2020) 28292–28299. https://doi.org/10.1016/J.CERAMINT.2020.07.332.
[39] M. M. El-Desoky, Characterization and transport properties of V2O5–Fe2O3–TeO2 glasses, J Non Cryst Solids. 351 (2005) 3139–3146. https://doi.org/10.1016/J.JNONCRYSOL.2005.08.004.
[40] B. V. Kumar, T. Sankarappa, M. P. Kumar, S. Kumar, Electronic transport properties of mixed transition metal ions doped borophosphate glasses, J Non Cryst Solids. 355 (2009) 229–234. https://doi.org/10.1016/j.jnoncrysol.2008.11.018.
[41] B. Dutta, N. A. Fahmy, I. L. Pegg, Effect of mixed transition-metal ions in glasses. I. The P2O5–V2O5–Fe2O3 system, J Non Cryst Solids. 351 (2005) 1958–1966. https://doi.org/10.1016/J.JNONCRYSOL.2005.05.005.
[42] G. M. Turky, A. M. Fayad, G. T. El-Bassyouni, M. Abdel-Baki, Dielectric and electrical properties of MoO3-doped borophosphate glass: dielectric spectroscopy investigations, Journal of Materials Science: Materials in Electronics. 32 (2021) 22417–22428. https://doi.org/10.1007/S10854-021-06728-2/FIGURE S/9.
[43] Samdani, G. A. Alharshan, L. Haritha, K. C. Sekhar, Z. A. Alrowaili, I. O. Olarinoye, M. S. Al-Buriahi, Synthesis and characterization of the optical MgO-BaO-B2O3-TeO2-MnO2 glass system, Optik (Stuttg). 267 (2022) 169679. https://doi.org/10.1016/J.IJLEO.2022.169679.
[44] V. Kundu, R. L. Dhiman, D. Goyal, A. S. Maan, D. R. Goyal, Structural and Physical Properties of Fe2O3-B2O3-V2O5 Glasses, Researchgate. Net. (2008). https://doi.org/10.1155/2008/937054.
[45] B. Dutta, N. A. Fahmy, I. L. Pegg, Effect of mixed transition-metal ions in glasses. Part III: The P2O5–V2O5–MnO system, J Non Cryst Solids. 352 (2006) 2100–2108. https://doi.org/10.1016/j.jnoncrysol.2006.02.043.
[46] N. Mott, E. Davis, Electronic processes in non-crystalline materials, 2012th ed., OUP Oxford, 2012. https://books.google.com/books?hl=en&lr=&id=Pl1b_yhKH-YC&oi=fnd&pg=PP1&dq=Mott,+N.+F.,+and+E.+A.+Davis.+%22Electronic+processes+in+non-crystalline+materials,+2nd+edn.+Clarendon.%22+Oxford+(1979).&ots=d7xSaBHXWc&sig=Yu9LHeTmzkbjZ11rVTfz1QVuB20 (accessed August 11, 2022).
[47] A. v. Banagar, M. Prashant Kumar, N. Nagaraja, Effect of Mixed Transition Metal Ions in B2O3-V2O5-MoO3 Glass System, Journal of Electronic Materials 2020 49: 12. 49 (2020) 7370–7378. https://doi.org/10.1007/S11664-020-08499-8.
[48] E. M. Ahmed, N. A. El-Ghamaz, S. M. Albhbah, Limited frequency domain of the ac conductivity of some As2O3. V2O5. CuO. Nd2O3 glasses, J Non Cryst Solids. 558 (2021) 120659. https://doi.org/10.1016/J.JNONCRYSOL.2021.120659.
[49] N. F. Mott, Conduction in glasses containing transition metal ions, J Non Cryst Solids. 1 (1968) 1–17. https://doi.org/10.1016/0022-3093(68)90002-1.
[50] S. Annamalai, R. P. Bhatta, I. L. Pegg, B. Dutta, Mixed transition-ion effect in the glass system: Fe2O3-MnO-TeO2, J Non Cryst Solids. 358 (2012) 1380–1386. https://doi.org/10.1016/j.jnoncrysol.2012.03.016.
[51] C. CHUNG, M. JD, M. L, ELECTRICAL PROPERTIES OF SEMICONDUCTING OXIDE GLASSES, ELECTRICAL PROPERTIES OF SEMICONDUCTING OXIDE GLASSES. (1979).
[52] H. Doweidar, I. A. Gohar, A. A. Megahed, G. El-Damrawi, Structure-transport relationships in lead borate glasses containing V2O5, Solid State Ion. 46 (1991) 275–281. https://doi.org/10.1016/0167-2738(91)90226-2.
[53] A. Ghosh, B. K. Chaudhuri, DC conductivity of V2O5-Bi2O3 glasses, J Non Cryst Solids. 83 (1986) 151–161. https://doi.org/10.1016/0022-3093(86)90065-7.
[54] J. Appel, Polarons, in: Solid State Physics - Advances in Research and Applications, Academic Press, 1968: pp. 193–391. https://doi.org/10.1016/S0081-1947(08)60741-9.
[55] A. Satpati, G. R. Kandregula, K. Ramanujam, Machine learning enabled high-throughput screening of inorganic solid electrolytes for regulating dendritic growth in lithium metal anodes, New Journal of Chemistry. 46 (2022) 14227–14238. https://doi.org/10.1039/D2NJ01827F.
[56] H. Satou, H. Sakata, DC Hopping conduction in Fe2O3–MgO–TeO2 glasses, Mater Chem Phys. 65 (2000) 186–191. https://doi.org/10.1016/S0254-0584(00)00242-X.
[57] A. K. Bandyopadhyay, J. O. Isard, S. Parke, Polaronic conduction and spectroscopy of borate glasses containing vanadium, J Phys D Appl Phys. 11 (1978) 2559. https://doi.org/10.1088/0022-3727/11/18/015.
[58] I. A. GOHAR, Y. M. MOUSTAFA, A. A. MEGAHED, E. MANSOUR, Electrical properties of semiconducting barium vanadate glasses containing iron oxide, Physics and Chemistry of Glasses. 39 (1998) 56–60. https://www.ingentaconnect.com/content/sgt/pcg/1998/00000039/00000001/3901056 (accessed August 28, 2022).
[59] P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Physical Review. 109 (1958) 1492–1505. https://doi.org/10.1103/PhysRev.109.1492.
[60] E. Abrahams, P. W. Anderson, T. v. Ramakrishnan, Non-ohmic effects of anderson localization, Philosophical Magazine B. 42 (1980) 827–833. https://doi.org/10.1080/01418638008222330.
[61] D. Emin, Lattice relaxation and small-polaron hopping motion in disordered materials, J Non Cryst Solids. 8–10 (1972) 511–515. https://doi.org/10.1016/0022-3093(72)90185-8.
[62] I. G. Austin, N. F. Mott, Polarons in Crystalline and Non-crystalline Materials, Adv Phys. 18 (1969) 41–102. https://doi.org/10.1080/00018736900101267.
[63] G. N. Greaves, Small polaron conduction in V2O5-P2O5 glasses, J Non Cryst Solids. 11 (1973) 427–446. https://doi.org/10.1016/0022-3093(73)90089-6.
[64] M. Sayer, A. Mansingh, The application of small polaron theory to transition metal oxide glasses, J Non Cryst Solids. 58 (1983) 91–98. https://doi.org/10.1016/0022-3093(83)90105-9.
[65] M. Pal, K. Hirota, Y. Tsujigami, H. Sakata, Structural and electrical properties of MoO3-TeO2 glasses, J Phys D Appl Phys. 34 (2001) 459. https://doi.org/10.1088/0022-3727/34/4/303.
[66] T. Holstein, Studies of polaron motion, Ann Phys (N Y). 8 (1959) 343–389. https://doi.org/10.1016/0003-4916(59)90003-X.
[67] M. S. Al-Assiri, S. A. Salem, M. M. El-Desoky, Effect of iron doping on the characterization and transport properties of calcium phosphate glassy semiconductors, Journal of Physics and Chemistry of Solids. 67 (2006) 1873–1881. https://doi.org/10.1016/J.JPCS.2006.04.015.
[68] A. Srivastava, S. Roy, N. Mehta, A. Dahshan, S. D. Sharma, Studies of low-temperature electrical measurements in some multicomponent selenium rich glassy alloys: Role of sliver modifier, J Non Cryst Solids. 575 (2022) 121171. https://doi.org/10.1016/J.JNONCRYSOL.2021.121171.
[69] A. Malge, T. Sankarappa, T. Sujatha, P. Abdul Azeem, G. B. Devidas, S. Kori, Structural and DC conductivity studies of borotellurite glasses doped with ZnO, Li2O and Dy2O3, Mater Today Proc. 26 (2020) 1960–1963. https://doi.org/10.1016/J.MATPR.2020.02.428.
Cite This Article
  • APA Style

    Sangamesh Jakhati, Nagaraja Nadavalumane, Ashwajeet Jalandhar Rao Sonkamble. (2022). Investigation of Mixed Transition Effect in MnO2 AND V2O5 Doped Ternary Borate Glass System. American Journal of Physics and Applications, 10(5), 62-71. https://doi.org/10.11648/j.ajpa.20221005.11

    Copy | Download

    ACS Style

    Sangamesh Jakhati; Nagaraja Nadavalumane; Ashwajeet Jalandhar Rao Sonkamble. Investigation of Mixed Transition Effect in MnO2 AND V2O5 Doped Ternary Borate Glass System. Am. J. Phys. Appl. 2022, 10(5), 62-71. doi: 10.11648/j.ajpa.20221005.11

    Copy | Download

    AMA Style

    Sangamesh Jakhati, Nagaraja Nadavalumane, Ashwajeet Jalandhar Rao Sonkamble. Investigation of Mixed Transition Effect in MnO2 AND V2O5 Doped Ternary Borate Glass System. Am J Phys Appl. 2022;10(5):62-71. doi: 10.11648/j.ajpa.20221005.11

    Copy | Download

  • @article{10.11648/j.ajpa.20221005.11,
      author = {Sangamesh Jakhati and Nagaraja Nadavalumane and Ashwajeet Jalandhar Rao Sonkamble},
      title = {Investigation of Mixed Transition Effect in MnO2 AND V2O5 Doped Ternary Borate Glass System},
      journal = {American Journal of Physics and Applications},
      volume = {10},
      number = {5},
      pages = {62-71},
      doi = {10.11648/j.ajpa.20221005.11},
      url = {https://doi.org/10.11648/j.ajpa.20221005.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20221005.11},
      abstract = {A novel ternary borate glass system was synthesized by utilizing standard melt quench approach. All of the samples went through an annealing process for 6 hours to remove retained thermal strains present in glass structure. XRD test revealed that the samples were indeed glassy. Density was determined at room temperature; oxygen packing density (OPD) and molar volumes were calculated. Both density and OPD changes followed recognizable patterns that complemented the Mixed Transition Effect (MTE). The electrical resistivity was measured by Keithley two probe instrument in range of temperatures 308-523K and conductivity was estimated. These glasses are unique among single TMI doped glasses systems in that they have exceptionally high conductivities in 10-5 to 10-3 (Ωm)-1 range, while still maintaining low activation energies. The conductivity data was analyzed through Motts small polaron hopping (SPH) model at higher temperature region T > θD/2 and remaining data was analyzed by employing the VRH models by Mott’s, Mott-Greave’s at lower temperature region T θD/2. Respective polaron related parameters such as small polaron radii, the average distance between transition metal ions, TMI density, mobility etc. were estimated. The very first time, by using a MnO2-V2O5 dopant ternary borate glasses have been synthesized. Studies on high-and low temperature DC conductivity investigations have revealed the presence of a mixed transition effect (MTE).},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Investigation of Mixed Transition Effect in MnO2 AND V2O5 Doped Ternary Borate Glass System
    AU  - Sangamesh Jakhati
    AU  - Nagaraja Nadavalumane
    AU  - Ashwajeet Jalandhar Rao Sonkamble
    Y1  - 2022/10/29
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ajpa.20221005.11
    DO  - 10.11648/j.ajpa.20221005.11
    T2  - American Journal of Physics and Applications
    JF  - American Journal of Physics and Applications
    JO  - American Journal of Physics and Applications
    SP  - 62
    EP  - 71
    PB  - Science Publishing Group
    SN  - 2330-4308
    UR  - https://doi.org/10.11648/j.ajpa.20221005.11
    AB  - A novel ternary borate glass system was synthesized by utilizing standard melt quench approach. All of the samples went through an annealing process for 6 hours to remove retained thermal strains present in glass structure. XRD test revealed that the samples were indeed glassy. Density was determined at room temperature; oxygen packing density (OPD) and molar volumes were calculated. Both density and OPD changes followed recognizable patterns that complemented the Mixed Transition Effect (MTE). The electrical resistivity was measured by Keithley two probe instrument in range of temperatures 308-523K and conductivity was estimated. These glasses are unique among single TMI doped glasses systems in that they have exceptionally high conductivities in 10-5 to 10-3 (Ωm)-1 range, while still maintaining low activation energies. The conductivity data was analyzed through Motts small polaron hopping (SPH) model at higher temperature region T > θD/2 and remaining data was analyzed by employing the VRH models by Mott’s, Mott-Greave’s at lower temperature region T θD/2. Respective polaron related parameters such as small polaron radii, the average distance between transition metal ions, TMI density, mobility etc. were estimated. The very first time, by using a MnO2-V2O5 dopant ternary borate glasses have been synthesized. Studies on high-and low temperature DC conductivity investigations have revealed the presence of a mixed transition effect (MTE).
    VL  - 10
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Physics (VTU-Research Centre), Rao Bahadur Y Mahabaleswarappa Engineering College, Ballari, India

  • Department of Physics (VTU-Research Centre), Rao Bahadur Y Mahabaleswarappa Engineering College, Ballari, India

  • Department of Physics, Davangere University, Davanagere, India

  • Sections