Cowpea plants are damaged by insects in North-Cameroon. During ecological survey (2021 and 2022) in 44 plots of 4x3.5 m each, insects were captured on stems, leaves, flowers and pods, stored in vials containing 70° alcohol, identified in laboratory and the community structure was characterized. We captured 26,015 adults belonging to six orders, 13 families, 19 genera and 19 species. Coleoptera, Hemiptera and Hymenoptera were species-rich orders [five species each (26.3%)]. Hemiptera was mostly abundant (40.0%) followed by Coleoptera (27.6%), Hymenoptera (21.9%), Lepidoptera (0.9%). Heteroptera and Orthoptera were least abundant (0.8% respectively). We recorded five (26.3%) useful species [the West African predator species Cheilomenes sulphurea (Coleoptera: Coccinellidae), and four (21.1%) afrotropical Apidae species [Apis mellifera adamsonni, Amegilla calens, Amegilla sp. and Xylocopa olivacea]], seven (36.8%) phytophagous species [the indomalayan native Aulacophora indica (Coleoptera: Chrysomelidae), Nearctic native Danaus plexippus (Lepidoptera: Nymphalidae), Palaearctic native Dolerus sp. (Hymenoptera: Tenthredinidae), afrotropical native Hypolimnas misippus (Lepidoptera: Nymphalidae), afrotropical native Monolepta marginella (Coleoptera: Chrysomelidae), Palaearctic native Phyllotreta cruciferae (Coleoptera: Chrysomelidae) and the Eurasian native Tettigonia viridissima (Orthoptera: Tettigoniidae)]. We recorded seven (36.8%) sap-feeding species [the afrotropical native Anoplocnemis curvipes (Hemiptera: Coreidae), cosmopolitan Palaearctic native Aphis crassivora (Hemiptera: Aphididae), old world native Bothrogonia sp. (Hemiptera: Cicadellidae), subtropical native Dysdercus cingulata (Hemiptera: Pyrrhocoridae), western Palaearctic native Lagria hirta (Coleoptera: Tenebrionidae), North American native Poecilocapsus sp. (Hemiptera: Miridae) and the Palaearctic native Riptortus dentipes (Heteroptera: Alydidae)]. Giving up eight (42.1%) native species, 11 (57.9%) non-native species and 14 (73.7%) pest species [three natives species (15.8%) and 11 non-natives species (57.9%)]. The abundant species were M. marginella (39.9%), Poecilocapsus sp. (14.4%), Au. indica (11.4%), Ph. cruciferae (10.4%), C. sulphurea (4.6%), H. misippus (3.7%), L. hirta (3.4%), Ah. crassivora (2.4%) while 11 species (57.9%) were rare (<2.2% each). Insects associated with cowpea consisted mostly of non-native species and the situation calls for more research on the bio-ecology of recorded pests. Cowpea plants’ insect assemblage mostly presented in Bockle and Dang, a fairly significant regeneration force (Zipf and Zipf-Mandelbrot functioning models) and all conditions combine to soar. Due to the numerical and behavioural dominance of non-native insects, a significant number of resources are potentially exploitable. In due course, once the invaders would monopolize available resources and saturate the localities, they would not allow native species the niche opportunities to re-establish themselves. The consequences of loosing native species, which may well interact with the endemic flora and fauna, will be of extreme concern.
Published in | American Journal of Entomology (Volume 7, Issue 2) |
DOI | 10.11648/j.aje.20230702.12 |
Page(s) | 38-61 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Vigna unguiculata, Pest Insects, Biodiversity, North-Cameroon
[1] | Edeh, H. O. & Igberi, C. O. (2012). Assessment of vegetable cowpea production among small holder farmers in Ebonyi State, Nigeria. ARPN J. Agric. Biol. Sci., 7: 215-222. |
[2] | Badiane, F. A., Diouf, M. & Diouf, D. (2014). Cowpea, Pp.95-114. In M. Singh, I. Singh Bisht & M. Dutta (eds.). Broadening the Genetic Base of Grain Legumes, Springer India. DOI: 10.1007/978-81-322-2023-7_5. |
[3] | Abebe, B. K. & Alemayehu, M. T. (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J. Agric. Food Res., 10: 100383. https://doi.org/10.1016/j.jafr.2022.100383. |
[4] | Owade, J. O., Abong’, G., Okoth, M. & Mwang’ombe, A. W. (2020. A review of the contribution of cowpea leaves to food and nutrition security in East Africa. Food Sci. Nutr., 8: 36-47. https://doi.org/10.1002/fsn3.1337. |
[5] | Horn, L. & Shimelis, H. (2020). Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Ann. Agric. Sci., 65: 83-91. DOI: 10.1016/j.aoas.2020.03.002. |
[6] | Basha, K., Ewang, P. N., Ndemo & Okoyo, E. (2017). Factors Affecting productivity of Smallholder potato Growers in Bore District, Guji Zone, Oromia Regional State, Ethiopia. Dev. Ctry. stud., 7 (9): 18-26. |
[7] | Ngameni Tchamadeu, N., Kenko Nkontcheu, D. B. & Djomo Nana, E. 2017. Evaluation des facteurs de risques environnementaux lies a la mauvaise utilisation des pesticides par les maraichers au Cameroun: le cas de Balessing a l’Ouest Cameroun. Afr. Sci., 13 (1): 91-100. |
[8] | Mengui, K. C., Oh, S. & Lee, S. H. (2019). The Technical Efficiency of Smallholder Irish Potato Producers in Santa Subdivision, Cameroon. Agriculture, 9 (12): 259. |
[9] | Goac, Y., Worku, W., Mohammed, H. & Urage, E. (2021). Production Constraints, Farmers Preferred- traits and Farming System of Cowpea in the Southern Ethiopia. Research Square, 1-23. DOI: 10.21203/rs.3.rs-457943/v1. |
[10] | Afouda, L. C. A., Schulz, D., Wolf, G. & Wydra, K. (2012). Biological control of Macrophomina phaseolina on cowpea (Vigna unguiculata) under dry conditions by bacterial antagonists. Int. J. Biol. Chem. Sci., 6 (6): 5068-5077. DOI: http://dx.doi.org/10.4314/ijbcs.v6i6.25. |
[11] | Mishra, I., Roy, S. & Mishra, B. K. (2021). Comparative Biology of Three Coccinellid Predators on Cowpea Aphid Aphis craccivora. Indian J. Entomol., e21022. DOI: 202110.5958/IJE.2021.35. |
[12] | Taimanga & Tchuenguem Fohouo, F.-N. (2018). Pollination efficiency of Apis mellifera Linnaeus 1758 (Hymenoptera: Apidae) on Mimosa pudica Linnaeus 1753 (Fabaceae) inflorescences at Yassa (Douala - Cameroon). J. Entomol. Zool. Stud., 6 (5): 2027-2033. |
[13] | Dingha, B. N., Jackai, L. E., Amoah, B. A. & Akotsen-Mensah, C. (2021). Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity. Insects, 12 (1): 54. https://doi.org/10.3390/insects12010054. |
[14] | Srinivasa Raoa, M., Shaila, O., Sreelakshmi, P., Vennila, S., Vanaja, M., Subba Rao, A. V. M., Maheswari, M. & Sammy Reddi, K. (2018). Tritrophic Interactions of Cowpea [Vigna unguiculata subsp unguiculata (L.)], Aphids [Aphis craccivora (Koch)] and Coccinellids [Menochilus sexmaculatus (Fab.)] under eCO2 and eTemp. J. Asia-Pac. Entomol., 21 (2): 531-537. https://doi.org/10.1016/j.aspen.2018.03.003. |
[15] | Ba, N. M., Huesing, J. E.; Dabiré-Binso, C. L., Tamò, M., Pittendrigh, B. R. & Murdock, L. L. (2020). The legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), an important insect pest of cowpea: a review emphasizing West Africa. Int. J. Trop. Insect. Sci. 2019; https://doi.org/10.1007/s42690-019-00024-7. |
[16] | Zra, G. V., Mazi, S. & Tchuenguem Fohouo, F.-N. (2020). Pollination efficiency of Dactylurina staudingeri (Hymenoptera: Apidae) on Psorospermum febrifugum (Hypericaceae) at dang (Ngaoundere, Cameroon). J. Entomol. Zool. Stud., 8 (1): 216-224. |
[17] | Ekka, P. A., Kumari, S. & Rastogi, N. (2020). Facultative associations of two sympatric lycaenid butterflies with Camponotus compressus field study and larval surface ultrastructure. Halteres, 11: 44-55. DOI: 10.5281/zenodo.4043261. |
[18] | Obodji, A., Aboua, L. R. N., Tano, D. K. C. & Seri-Kouassi, B. P. (2016). Inventory of entomofaune associated with African eggplant (Solanum aethiopicum L.) according to the phonological stages assessment of damages caused by insect pests. J. Adv. Stud. Agric. Biol. Environ. Sci., 3 (2): 2455-0221. |
[19] | Cook, D., Herbert, A., Akin, D. S. & Reed J. (2011). Biology, Crop Injury, and Management of Thrips (Thysanoptera: Thripidae) Infesting Cotton Seedlings in the United States. J. Integr. Pest Manag., 2 (2): 1-9. |
[20] | Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends Ecol. Evol., 19 (2): 101-108. |
[21] | Babar, H. C., Asif, H. C., Abdul, G. L., Aslam, B., Imtaiz, A. N., Ammara, R., Fida, H. M., Mehroz, K., Farukh, A. & Zehua, Z. (2019). Insect Biodiversity in Brinjal Agro-Ecosystem. Pak. J. Sci. Ind. Res. A: Phys. Sci., 62B (3): 199-205. |
[22] | Kalpna, Ahmad Hajam, Y., Kumar, R. (2022). Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon, 8: e08703. https://doi.org/10.1016/j.heliyon.2021.e08703 |
[23] | Bele, M. Y., Tiani, A. M., Somorin, O. A. & Sonwa, D. J. (2013). Exploring vulnerability and adaptation to climate change of communities in the forest zone of Cameroon. Climatic Change, 119 (3-4): DOI: 10.1007/s10584-013-0738-z. |
[24] | Sonchieu, J., Ngassoum, M. B., Nantia Akono E. & Laxman, P. S. (2018). Pesticide Applications on Some Vegetables Cultivated and Health Implications in Santa, North WestCameroon. SSRG. Int J Agric Env., 4 (2): 39-46. https://doi.org/10.14445/23942568/IJAES-V4I2P108 |
[25] | Siyunda, A. C., Mwila, N., Mwala, M., Munyinda, K. L., Kamfwa, K., Chipabika, G. & Nshimbi, D. (2022). Laboratory Screening of Cowpea (Vigna unguiculata) Genotypes against Pulse Beetle, Callosobruchus maculates. Int. J. Bus. Sci., 2022; 6 (1): 85-93. DOI: 10.5281/zenodo.6880440. |
[26] | Otiobo, E. N. A., Tchuenguem Fohouo, F. – N., Djieto-Lordon, C. (2015). Foraging and pollination behaviour of Apis mellifera adansonii (Hymenoptera: Apidae) on Physalis micrantha (Solanales: Solanaceae) flowers at Bambui (Nord West, Cameroon J. Entomol. Zool. Stud., 3: 250-256. |
[27] | Nghia, N. T. & Srivastava, P. (2015). Biodiversity of beneficial insect associated with xowpea at Pantnagar – Uttarakhand – India. OMONRICE 20: 73-79. |
[28] | Anusha, Ch.., Natikar, P. K. & Balikai, R. A. (2016). Insect pests of cowpea and their management – A review. J. Exp. Zool. India, 19 (2): 635-642. |
[29] | Zaki, A. Y. & Aly, A. I. (2018). Biodiversity of Spider and Other Arthropods Inhabiting Cowpea under Effect of Fish Culture Water and Nitrogen Fertilization and its effect on Yield and Protein at Fayoum Governorate, Egypt. ACARINES, 12: 87-98. |
[30] | Manap, T. & Fajri, M. (2020). Diversity of Bees and Wasp (Hymenoptera) in Cowpea (Vigna sinensis L.) in Agricultural Area at Martapura District, Banjar Regency, South Kalimantan. J. Sci. Technol.. 9. 29-33. 10.22487/25411969.2019.v9.i2.15174. |
[31] | Apriyani, S., Kurnia, A. & Sutriadi, M. T. (2021). Diversity of insect on cowpea cropping in rainfed land. OP Conf. Ser.: Earth Environ. Sci., 739 (2021) 012068. doi: 10.1088/1755-1315/739/1/012068. |
[32] | Djirabaye, N. (2021). Landrace Diversity and Production Systems of Cowpea (Vigna unguiculata L. Walp.) in Southern Chad. Int. J. Appl. Sci. Biotechnol. 9 (3): 176-186. DOI: 10.3126/ijasbt.v9i3.39869. |
[33] | Kosini, D., Nukenine, E. N., Tofel, K. H., Goudoungou, J. W., Langsi, D. J., Adamou, M., Abdou, J. P., Djafsia, B., & Ndouwe, H. M. T. (2020). Impact of Environment on Callosobruchus maculatus (Coleoptera: Chrysomelidae) Response to Acetone Extract of Gnidia kaussiana Meisn (Thymeleaceae) and Ocimum canum Sims (Lamiaceae) Botanical Insecticides. Eur. J. Nutr. Food Saf., 12 (8): 128-139. DOI: 10.9734/EJNFS/2020/v12i830277. |
[34] | Adamou, M., Kosini, D., Tchoubou-Sale, A., Massah, O. D., Tchocgnia, T. F. C., Mohammadou, M., Youssoufa, O. & Nukenine, E. N. (2022). Impact of aqueous extracts of Cassia occidentalis, Eucalyptus camaldulensis and Hyptis suaveolens on the entomofauna and the seed yield of Gossypium hirsutum at Bokle (Garoua, Cameroon). Heliyon, 8 (10): e 10937. DOI: 10.1016/j.heliyon.2022.e10937. PMID: 36237980. PMCID: PMC9552113. |
[35] | Ngegba, P. M., Cui, G., Khalid, M. Z. & Zhong G. (2022). Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture, 12 (5): 600. https://doi.org/10.3390/agriculture12050600 |
[36] | Mohammadou, M., Adamou, M., Taïmanga, Kosini, D. & Kenne, M. (2023). Seed Yield Improvement in Vigna unguiculata (L.) (Fabaceae): Efficiency of Pollinators and Impact of Aqueous Leaf Extract of Three Plant Species in North Cameroon. Asian J. Crop Sci., 8 (3): 146-172. DOI: 10.9734/AJRCS/2023/v8i3176. |
[37] | Onana, J. M. (2018). Cartographie des écosystèmes du Cameroun. Int. J. Biol. Chem. Sci., 12 (2): 940-957. https://dx.doi.org/10.4314/ijbcs.v12i2.25. |
[38] | Yaouban B. & Bitondo, D. (2022). Analysis of rainfall dynamics in the three main cities of northern Cameroon. Research Square, 12 (12) 1-15. https://doi.org/10.21203/rs.3.rs-1757088/v2 |
[39] | Climate-Data.org, (2023). Ngaoundere Climate (Cameroon). Accessed 18 Febuary 2023. Available from https://en.climate-data.org/africa/cameroon/adamawa/ngaoundere-898011/. |
[40] | Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006). World Map of the Köppen-Geiger Climate Classification Updated. Meteorol Z., 15 (3): 259-263. DOI: 10.1127/0941-2948/2006/0130. |
[41] | Zettler, J. A., Mateer, S. C., Link-Pérez, M. A., Bailey, J., Demars, G. & Ness, T. (2016). To Key or Not to Key: A New Key to Simplify and Improve the Accuracy of Insect Identification. Am. Biol. Teach, 78 (8): 626-633. DOI: 10.1525/abt.2016.78.8.626. |
[42] | Albrecht, A. C. (2017). Illustrated identification guide to the Nordic aphids feeding on Conifers (Pinophyta) (Insecta, Hemiptera, Sternorhyncha, Aphidomorpha). Eur. J. Taxon, 338: 1-160. DOI: https://doi.org/10.5852/ejt.2017.338. |
[43] | Brailovsky, H. (2014). Illustrated key for identification of the species included in the genus Leptoglossus (Hemiptera: Heteroptera: Coreidae: Coreini: Anisoscelini), and descriptions of five new species and new synonyms. Zootaxa, 3794: 143-178. https://doi.org/10.11646/zootaxa.3794.1.7 |
[44] | Lecoq, M. (2010). Taxonomie et systématique des acridiens et principales espèces d’Afrique de l’Ouest. CIRAD, UPR Acridologie, Montpellier, France. |
[45] | Tronquet M. Catalogue des Coléoptères de France. Association Roussillonnaise d’Entomologie, Perpignan. Supplément au Tome XXIII-R. A. R. E., 2014. ISBN: 1288-5509. |
[46] | Gourmel C. Catalogue illustré des principaux insectes ravageurs et auxiliaires des cultures de Guyane. Coopérative BioSavane, Guyane, 2014. |
[47] | Riley E, Clark S, Seeno T. Catalog of leaf beetles of America north of Mexico (Coleoptera: Megalopodidae, Orsodacnidae and Chrysomelidae, excluding Bruchinae). Coleopterists Society. Special publication/Coleopterists Society, no. 1. 2003. ISBN: 0972608710. Accessed 19 February 2023. Available at https://agris.fao.org/agris-search/search.do?recordID=US201300088605 |
[48] | Rice W. Analyzing tables of statistical tests. Evolution. 1989; 43 (1): 223-225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x. |
[49] | Schluter, D. A. (1984). A variance test for detecting species associations, with some example applications. Ecology, 65 (3): 998-1005. |
[50] | Chao, A., Chadzon, R. L., Colwell, R. K., & Shen, T.-J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett., 8: 148-159. |
[51] | Biawa-Kagmegni, M., Foguieng-Saha, A. D., Guetsop-Ngouadjie, R. P., Tsekane, S. J., Fouelifack-Nintidem B. Moumite Mohamed, B., Yetchom-Fondjo, J. A., Ngamaleu-Siewe, B., Kenne, E. L., Tuekam Kowa P. S., Fantio R. M., Yomon, A. K., Mbenoun Masse, P. S., Kenne, M., & Fomena, A. (2021). Ants community structure in the urban and the city suburbs areas of Douala (Littoral-Cameroon). J. Insect Biodivers., 025 (2): 033–059. |
[52] | McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbet, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I., & White, E. P. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 10 (10): 995-1015. |
[53] | R Core Team, (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/. |
[54] | Wilson, J. B. (1991). Methods for fitting dominance/diversity curves. J. Veg. Sci., 2 (1): 35-46. |
[55] | Iganaki, H. (1967). Mise au point de la loi de Motomura et essai d’une ecologie ́evolutive. Vie et Milieu, 18: 153-166. |
[56] | Li, W. (2002). Zipf's Law Everywhere. Glottometrics, 5: 14-21. |
[57] | Zipf, G. K. (1965). Human Behavour and the Principle of Least Effort: An introduction to human ecology. (2nd edition), Hafner, New York, NY, USA, Pp. 573. |
[58] | Le, D.-H., Pham, C.-K., Nguyen, T. T. T., & Bui, T. T. (2012). Parameter extraction and optimization using Levenberg-Marquardt algorithm, Pp. 434–437. In Proceedings of 2012 IEEE conference. Fourth International Conference on Communications and Electronics (ICCE), Hanoi University of Science and Technology, Hanoi (Vietnam). |
[59] | Murthy, Z. V. P. 2014. Nonlinear Regression: Levenberg-Marquardt Method, Pp. 1-3. In E. Drioli, & L. Giorno, (ed.s), Encyclopedia of Membranes. Springer-Verlag, Berlin, Heidelberg. |
[60] | Frontier, S. (1987). Applications of Fractal Theory to Ecology, Pp. 335–378. In P. Legendre, & L. Legendre (eds.). Developments in Numerical Ecology. NATO ASI Series book series (volume 14). Springer, Berlin, Heidelberg. |
[61] | Bach, P., Amanieu, M., Lam-Hoai, T., & Lasserre, G. (1988). Application du modele de distribution d'abondance de Mandelbrot a l'estimation des captures dans l'etang de Thau. J. Cons. Int. Explor. Mer, 44: 235-246. |
[62] | Lee C-F, Beenen R. Revision of the genus Aulacophora from Taiwan (Coleoptera: Chrysomelidae: Galerucinae). Zootaxa. 2015; 3949 (2): 151-190. http://dx.doi.org/10.11646/zootaxa.3949.2.1. |
[63] | Wagner T. 2001. Revision of Afrotropical Monolepta Chevrolat, 1837 (Coleoptera: Chrysomelidae, Galerucinae). Part II: Species with red elytra, pronotum and head, with descriptions of new specie. Bonn Zool Beitr. 2001; 50: 49-65. |
[64] | Tansey JA, Dosdall LM, Keddie BA. Phyllotreta cruciferae and Phyllotreta striolata responses to insecticidal seed treatments with different modes of action. J Appl Entomol. 2008; 133 (3): 201-209. DOI: 10.1111/j.1439-0418.2008.01321.x. |
[65] | Hounkpati K, McHugh JV, Niang AA, Goergen G. Documenting museum records of West African Coccinellidae (Coleoptera) in Benin and Senegal. Biodivers Data J. 2020; 8: e47340. DOI: 10.3897/BDJ.8.e47340. |
[66] | Merkl O. On taxonomy, nomenclature, and distribution of some Palaearctic Lagriini, with description of a new species from Taiwan (Coleoptera: Tenebrionidae). Acta Zool Acad Sci Hung. 2004; 50: 283-305. |
[67] | Blackman RL, Eastop VF. Aphids on the World’s Crops. An Identication and Information Guide. Second Edition. The Natural History Museum, London, 2000. ISBN: 978-0-471-85191-2. |
[68] | Dietrich CH. Keys to the families of Cicadomorpha and subfamilies and tribes of Cicadellidae (Hemiptera: Auchenorrhyncha). Fla Entomol. 2005; 88 (4): 502-517. doi: 10.1653/0015-4040(2005)88[502:kttfoc]2.0.co;2. |
[69] | Yegoue N’GL, Soro S, Tra Bi CS. Heteroptera Coreidae (Anoplocnemis curvipes, Homoeocerus pallens, Leptoglossus membranaceus and Pseudotheraptus devastans): Four crop pest and their wild host plants. Am J Agric Res. 2015; 1 (4): 4-11. |
[70] | McLeod R. (2005). BugGuide. Genus Poecilocapsus. Available at https://bugguide.net/node/view/13220 |
[71] | Ranjan A, Kumar M, Shubham. Studies of The Distribution of Red Cotton Bug, Dysdercus cingulatus (Fabricus) on Certain Host Plants of Malvaceae Family in Bihar (India). Bull Env Pharmacol Life Sci. 2020; 9 (11): 23-27. |
[72] | Jansen MA; Halbert SE. Key to Florida Alydidae (Hemiptera: Heteroptera) and selected exotic pest species. Insecta Mundi. 2016; 0476: 1-14. |
[73] | Martins DJ (2004) Foraging patterns of managed honeybees and wild bee species in an arid African environment: ecology, biodiversity and competition. Intern J Trop Insect Sci 24 (1): 105–115. |
[74] | Martins DJ (2008) Pollination observations of the African Violet in the Taita Hills, Kenya. J EA Nat Hist 97 (1): 33-42. |
[75] | Ascher JS (2010) Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species&flags=HAS: accessed 26 Dec 2010. |
[76] | Eardley CD. and Urban R 2010 Catalogue of Afrotropical Bees (Hymenoptera: Apoidea: Apiformes). Zootaxa 2455: 1-548. |
[77] | Fletcher DJC. (2003). The African Bee, Apis mellifera adansonii, in Africa. Annual Review of Entomology 23 (1): 151-171. DOI: 10.1146/annurev.en.23.010178.001055. |
[78] | Pauly A. (2016). Les Xylocopa d'Afrique. Atlas Hymenoptera. Available at http://www.atlashymenoptera.net/page.aspx??id=84. Consulted 15th April 2023. |
[79] | Khayrandish, M. & Nadimi, A. (2018). Sawflies from Zanjan Province, with the first report of Dolerus murcius Konow, 1895 (Hymenoptera: Tenthredinidae: Selandriinae) for Iran. Journal of Insect Biodiversity and Systematics, 4 (4): 253–259. https://doi.org/10.52547/jibs.4.4.253 |
[80] | Haris, A. (2000). Study on the Palaearctic Dolerus Panzer, 1801 species (Hymenoptera: Tenthredinidae) Part 3. Folia Entomologica Hungarica. 61. 95-148. |
[81] | COSEPAC. 2016. Évaluation et Rapport de situation du COSEPAC sur le monarque (Danaus plexippus) au Canada. Comité sur la situation des espèces en péril au Canada. Ottawa. xiv + 65 p. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=Fr&n=24F7211B-1) |
[82] | Losada ME. 2013. Hypolimnas misippus (Linnaeus, 1764) (Lepidoptera: Nymphalidae), a pantropical species present in Venezuela. Entomotropica, 28 (3): 237-241. |
[83] | Rhee H. Disentangeling the distribution of Tettigonia viridissima (Linnaeus, 1758) in the eastern part of Eurasia using acoustical and morphological data. Articulata. 2013; 28 (1/2): 103-114. |
[84] | Akunne, C. E., Ononye, B. U., & Mogbo, T. C. (2013). Insects: Friends or Enemies? Glob. J. Biol. Agric. Health Sci., 2 (3): 134-140. |
[85] | Adja, N. A., Danho, M., Alabi, T. A. F., Gnago, A. J., Zimmer, J. Y., Francis, F., Kouassi, P., Baudoin, J. P., & Zoro Bi, I. A. (2014). Entomofauna associated with African oleaginous cucurbits (Lagenaria siceraria Molina (Standl. 1930) and Citrullus lanatus Thumb (Matsum & Nakai 1916)) and impact of pests on production. Int. J. Entomol., 50 (3-4): 301-310. |
[86] | Navasero, M. V. (2015). Insect Pests of Eggplant, Pp. 354-383. In F. M. Dela Cueva, C. B. Pascual, C. M. Bajet & T. U. Dalisay, (eds.), Pests and Diseases of Economically Important Crops in the Philippines. Pest Management Council of the Philippine, Inc. c/o Crop Protection Cluster, University of the Philippines Los Banos, College, Laguna. |
[87] | Johnson, F., Gbon, G. A., Boga, J. P., & N’Goran, A. (2019). Incidence des insectes et des nematodes sur la production de l’aubergine Solanum aethiopicum Linne, 1756. Variete Djamba F1 dans la zone periurbaine d’Abidjan, Cote d’Ivoire. Int. J. Multidiscip., 6: 6-11. |
[88] | Fouelifack-Nintidem B., J. A. Yetchom-Fondjo, S. J. Tsekane, B. Ngamaleu-Siewe, E. L. Kenne, M. Biawa Kagmegni, P. S. Tuekam-Kowa, A. K. Yomon, R. M. Kentsop-Tsafong, A. M. Dim-Mbianda & M. Kenne, 2021. Diversity and abundance of pest insects associated with the Ethiopian eggplant plants Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon). American Journal of Entomology, 5 (3): 70-91. doi: 10.11648/j.aje.20210503.14. |
[89] | Ngamaleu-Séwé B., B. Fouelifack-Nintidem, J. A. Yetchom-Fondjo, B. Moumite Mohamed, S. J. Tsekane, E. L. Kenne, M. Biawa-Kagmegni, P. S. Tuekam Kowa, R. M. Fantio, A. K. Yomon & M. Kenne, 2021. Abundance and diversity of insects associated with Solanum tuberosum L. 1753 (Solanaceae) after insecticide treatments in Balessing (West-Cameroon). American Journal of Entomology, 5 (3): 51-69. Doi: 10.11648/j.aje.20210503.13. |
[90] | Fontem, D. A., Songwalang, A. T., Berinyuy, J. E., & Schippers, R. R. (2003). Impact of fungicide applications for late blight management on huckleberry yields in Cameroon. Afr. Crop Sci. J., 11 (3): 163-170. |
[91] | Abossolo, S. A., Batha, R. A. S., & Djeugang, A. B. (2015). Identification des risques pluviometriques sur la culture du mais dans l’arrondissement de Penka-Michel, dans les hautes terres de l’Ouest du Cameroun. Afr. Sci., 11 (2): 136-146. |
[92] | Manawadu D. and H. Sharah (1990). Review of Insects associated with Cowpea: the case of Maiduguri in the Semi -arid zone of Nigeria. Nigerian J. of Ent., 11: 100-111. |
[93] | Djidjonri F. P. Nukenine E. N. and Koehler H. H., 2019. Abundance and Diversity of Insect Pests on Maize, Cowpea and Okra in a Comparative Experiment Testing Effects of Intercropping and Insecticide in the Cameroonian Guinean Savannah and Sudano Sahelian Agro-ecological Zones. Journal of Experimental Agriculture International. Journal of Experimental Agriculture International 29 (6): 1-20. DOI: 10.9734/JEAI/2019/45677. |
[94] | Zahra T. & Mehran R. & Asghar T. A. (2019). Cowpea: Insect Pest Management, Pp.1-48. In: Prathamesh Gorowala and Srushti Mandhatri (eds.). Agricultural Research Updates. Volume, 26. Nova Science Pulishers, Inc. |
[95] | Latif, M. A., Rahman, M. M., Islam, M. R., & Nuruddin, M. M. (2009). Survey of Arthropod Biodiversity in the Brinjal Field. J. Entomol., 6 (1): 28-34. |
[96] | Chhangani, G., Mahla, M. K., Swaminathan, R., Jain, H. K., Ahir, K. C. and Sharma, K. (2022). Diversity of Insect Fauna Associated with Summer and Monsoon Cowpea [Vigna unguiculata (L.) Walp.]. Legume Research, 45 (6): 775-779. doi 10.18805/LR-4529. |
[97] | Alam, M. Z., Crump, A. R., Haque, M. M., Islam, M. S., Hossain, E., Hasan, S. B., Hasan, S. B., & Hossain, M. S. (2016). Effects of Integrated Pest Management on Pest Damage and Yield Components in a Rice Agro-Ecosystem in the Barisal Region of Bangladesh. Frontiers in Environmental Science, 4: 22. |
[98] | Uno, S., Cotton, J., & Philpott, S. M. (2010). Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst., 13: 425–441. |
[99] | Solar, R. R. C., Barlow, J., Andersen, A. N., Schoereder, J. H., Berenguer, E., Ferreira, J. N., & Gardner, T. A. (2016). Biodiversity consequences of land-use change and forest disturbance in the Amazon: A multi-scale assessment using ant communities. Biol. Conserv., 197: 98–107. |
[100] | Dzokou, V. J., Lontchi, Fofe, N., Kamgaing, Kouam, B. H., Yaouba, A., & Tamesse, J. L. (2021). Fauna Pests Infesting Pepper (Piper nigrum L.) in Penja-Cameroon. Am. J. Entomol., 5 (2): 32-38. |
[101] | Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. J. (2002). The causes and components of ant invasions. Annu. Rev. Ecol. Syst., 33: 181-233. |
[102] | Yeboue N’G. L., Soro S., Trabi BI C. S. (2015). Heteroptera Coreidae (Anoplocnemis curvipes, Homoeocerus pallens, Leptoglossus membranaceus and Pseudotheraptus devastans): Four crop pest and their wild host plants. American Research Journal of Agriculture, 1 (4): 4-11. |
[103] | Dimkpa, S. O. N., Tobin-West M. D. and Ukoima, H. N. (2019). Pest alert: Outbreak of Anoplocnemis curvipes in RSU Citrus Orchard. International Journal of Entomology and Nematology Research, 4 (1): 1-9. |
[104] | Wagner, T. 2004. Phylogeny of Afrotropical Monolepta and related taxa (Galerucinae). pp. 75-84. In: Jolivet P., Santiago-Blay J. A. and Schmitt M. (Eds.). New Developments in the Biology of Chrysomelidae. SPB Academic Publishing, The Hague, The Netherlands. 803 pp. |
[105] | Lopatin, I. K. 1984. Leaf beetles (Chrysomelidae) of the Central Asia and Kazakhstan. OxonianPress, New Delhi, India. 413 pp. |
[106] | Mensah, B. & Kudom, A. (2011). Nutritional ecology of the mimetic butterfly Hypolimnas missipus L. (Lepidoptera: Nymphalidae) in Ghana. The Journal of Research on the Lepidoptera, 44: 29-33. DOI: 10.5962/p.266492. |
[107] | Kenne M, Djieto-Lordon C, Orivel J, Mony R, Fabre A, Dejean A. Influence of Insecticide Treatments on Ant-Hemiptera Associations in Tropical Plantations. J Econ Entomol. 2003; 96 (2): 251-258. https://doi.org/10.1603/0022-0493-96.2.251 |
[108] | Ekka PA, Kumari S, Rastogi N. Facultative associations of two sympatric lycaenid butterflies with Camponotus compressus field study and larval surface ultrastructure. Halteres. 2020; 11: 44-55. DOI: 10.5281/zenodo.4043261. |
[109] | Cagniant, H. (1989). Essai d'application de quelques indices et modèles de distributions d'abondances a trois peuplements de fourmis terricoles. Orsis, 4: 113-124. |
[110] | Errouissi, F., Jay-Robert, P., Lumaret, J.-P. & Piau, A. (2004). Composition and Structure of Dung Beetle (Coleoptera: Aphodiidae, Geotrupidae, Scarabaeidae) Assemblages in Mountain Grasslands of the Southern Alps. Annals of the Entomological Society of America, 97 (4): 701-709. |
[111] | Trouillet, J. & Vattier-Bernard, G. (1983). Phlébotomes du Mayombe Congolais (Diptera, Psychodidae). Analyse structurale de trois peuplements. Annales de Parasitologie Humaine et Comparée (Paris), 58 (3): 291-300. |
[112] | Komonen, A. & Elo, M. (2017). Ecological response hides behind the species abundance distribution: Community response to low-intensity disturbance in managed grasslands. Ecology and Evolution, 7: 8558-8566. |
[113] | Yetchom-Fondjo, J. A., Kekeunou, S., Kenne, M., Missoup, A. D. & Sheng-Quan, X. (2020). Diversity, abundance and distribution of grasshopper species (Orthoptera: Acrididea) in three different types of vegetation with different levels of anthropogenic disturbances in the Littoral Region of Cameroon. Journal of Insect Biodiversity, 14 (1): 16-33. |
[114] | Daget, J. (1976). Les modèles mathématiques en écologie. Masson, Paris (France), Pp. 172. |
[115] | Shea, K. & Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution, 17 (4): 170-176. |
[116] | Ferreira, F. C. & Petrere-Jr., M. (2008). Comments about some species abundance patterns: classic, neutral, and niche partitioning models. Brazilian Journal of Biology, 68 (4, Suppl.): 1003-1012. |
APA Style
Mohammadou, M., Fouelifack-Nintidem, B., Adamou, M., Taïmanga, Kossini, D., et al. (2023). Diversity and Abundance of Pest Insects Associated with Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae) in Bockle and Dang Localities (North-Cameroon). American Journal of Entomology, 7(2), 38-61. https://doi.org/10.11648/j.aje.20230702.12
ACS Style
Mohammadou, M.; Fouelifack-Nintidem, B.; Adamou, M.; Taïmanga; Kossini, D., et al. Diversity and Abundance of Pest Insects Associated with Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae) in Bockle and Dang Localities (North-Cameroon). Am. J. Entomol. 2023, 7(2), 38-61. doi: 10.11648/j.aje.20230702.12
AMA Style
Mohammadou M, Fouelifack-Nintidem B, Adamou M, Taïmanga, Kossini D, et al. Diversity and Abundance of Pest Insects Associated with Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae) in Bockle and Dang Localities (North-Cameroon). Am J Entomol. 2023;7(2):38-61. doi: 10.11648/j.aje.20230702.12
@article{10.11648/j.aje.20230702.12, author = {Moukhtar Mohammadou and Boris Fouelifack-Nintidem and Moïse Adamou and Taïmanga and Daniel Kossini and Sedrick Junior Tsekane and Babell Ngamaleu-Siewe and Edith Laure Kenne and Abdel Kayoum Yomon and Martin Kenne}, title = {Diversity and Abundance of Pest Insects Associated with Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae) in Bockle and Dang Localities (North-Cameroon)}, journal = {American Journal of Entomology}, volume = {7}, number = {2}, pages = {38-61}, doi = {10.11648/j.aje.20230702.12}, url = {https://doi.org/10.11648/j.aje.20230702.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aje.20230702.12}, abstract = {Cowpea plants are damaged by insects in North-Cameroon. During ecological survey (2021 and 2022) in 44 plots of 4x3.5 m each, insects were captured on stems, leaves, flowers and pods, stored in vials containing 70° alcohol, identified in laboratory and the community structure was characterized. We captured 26,015 adults belonging to six orders, 13 families, 19 genera and 19 species. Coleoptera, Hemiptera and Hymenoptera were species-rich orders [five species each (26.3%)]. Hemiptera was mostly abundant (40.0%) followed by Coleoptera (27.6%), Hymenoptera (21.9%), Lepidoptera (0.9%). Heteroptera and Orthoptera were least abundant (0.8% respectively). We recorded five (26.3%) useful species [the West African predator species Cheilomenes sulphurea (Coleoptera: Coccinellidae), and four (21.1%) afrotropical Apidae species [Apis mellifera adamsonni, Amegilla calens, Amegilla sp. and Xylocopa olivacea]], seven (36.8%) phytophagous species [the indomalayan native Aulacophora indica (Coleoptera: Chrysomelidae), Nearctic native Danaus plexippus (Lepidoptera: Nymphalidae), Palaearctic native Dolerus sp. (Hymenoptera: Tenthredinidae), afrotropical native Hypolimnas misippus (Lepidoptera: Nymphalidae), afrotropical native Monolepta marginella (Coleoptera: Chrysomelidae), Palaearctic native Phyllotreta cruciferae (Coleoptera: Chrysomelidae) and the Eurasian native Tettigonia viridissima (Orthoptera: Tettigoniidae)]. We recorded seven (36.8%) sap-feeding species [the afrotropical native Anoplocnemis curvipes (Hemiptera: Coreidae), cosmopolitan Palaearctic native Aphis crassivora (Hemiptera: Aphididae), old world native Bothrogonia sp. (Hemiptera: Cicadellidae), subtropical native Dysdercus cingulata (Hemiptera: Pyrrhocoridae), western Palaearctic native Lagria hirta (Coleoptera: Tenebrionidae), North American native Poecilocapsus sp. (Hemiptera: Miridae) and the Palaearctic native Riptortus dentipes (Heteroptera: Alydidae)]. Giving up eight (42.1%) native species, 11 (57.9%) non-native species and 14 (73.7%) pest species [three natives species (15.8%) and 11 non-natives species (57.9%)]. The abundant species were M. marginella (39.9%), Poecilocapsus sp. (14.4%), Au. indica (11.4%), Ph. cruciferae (10.4%), C. sulphurea (4.6%), H. misippus (3.7%), L. hirta (3.4%), Ah. crassivora (2.4%) while 11 species (57.9%) were rare (<2.2% each). Insects associated with cowpea consisted mostly of non-native species and the situation calls for more research on the bio-ecology of recorded pests. Cowpea plants’ insect assemblage mostly presented in Bockle and Dang, a fairly significant regeneration force (Zipf and Zipf-Mandelbrot functioning models) and all conditions combine to soar. Due to the numerical and behavioural dominance of non-native insects, a significant number of resources are potentially exploitable. In due course, once the invaders would monopolize available resources and saturate the localities, they would not allow native species the niche opportunities to re-establish themselves. The consequences of loosing native species, which may well interact with the endemic flora and fauna, will be of extreme concern.}, year = {2023} }
TY - JOUR T1 - Diversity and Abundance of Pest Insects Associated with Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae) in Bockle and Dang Localities (North-Cameroon) AU - Moukhtar Mohammadou AU - Boris Fouelifack-Nintidem AU - Moïse Adamou AU - Taïmanga AU - Daniel Kossini AU - Sedrick Junior Tsekane AU - Babell Ngamaleu-Siewe AU - Edith Laure Kenne AU - Abdel Kayoum Yomon AU - Martin Kenne Y1 - 2023/05/22 PY - 2023 N1 - https://doi.org/10.11648/j.aje.20230702.12 DO - 10.11648/j.aje.20230702.12 T2 - American Journal of Entomology JF - American Journal of Entomology JO - American Journal of Entomology SP - 38 EP - 61 PB - Science Publishing Group SN - 2640-0537 UR - https://doi.org/10.11648/j.aje.20230702.12 AB - Cowpea plants are damaged by insects in North-Cameroon. During ecological survey (2021 and 2022) in 44 plots of 4x3.5 m each, insects were captured on stems, leaves, flowers and pods, stored in vials containing 70° alcohol, identified in laboratory and the community structure was characterized. We captured 26,015 adults belonging to six orders, 13 families, 19 genera and 19 species. Coleoptera, Hemiptera and Hymenoptera were species-rich orders [five species each (26.3%)]. Hemiptera was mostly abundant (40.0%) followed by Coleoptera (27.6%), Hymenoptera (21.9%), Lepidoptera (0.9%). Heteroptera and Orthoptera were least abundant (0.8% respectively). We recorded five (26.3%) useful species [the West African predator species Cheilomenes sulphurea (Coleoptera: Coccinellidae), and four (21.1%) afrotropical Apidae species [Apis mellifera adamsonni, Amegilla calens, Amegilla sp. and Xylocopa olivacea]], seven (36.8%) phytophagous species [the indomalayan native Aulacophora indica (Coleoptera: Chrysomelidae), Nearctic native Danaus plexippus (Lepidoptera: Nymphalidae), Palaearctic native Dolerus sp. (Hymenoptera: Tenthredinidae), afrotropical native Hypolimnas misippus (Lepidoptera: Nymphalidae), afrotropical native Monolepta marginella (Coleoptera: Chrysomelidae), Palaearctic native Phyllotreta cruciferae (Coleoptera: Chrysomelidae) and the Eurasian native Tettigonia viridissima (Orthoptera: Tettigoniidae)]. We recorded seven (36.8%) sap-feeding species [the afrotropical native Anoplocnemis curvipes (Hemiptera: Coreidae), cosmopolitan Palaearctic native Aphis crassivora (Hemiptera: Aphididae), old world native Bothrogonia sp. (Hemiptera: Cicadellidae), subtropical native Dysdercus cingulata (Hemiptera: Pyrrhocoridae), western Palaearctic native Lagria hirta (Coleoptera: Tenebrionidae), North American native Poecilocapsus sp. (Hemiptera: Miridae) and the Palaearctic native Riptortus dentipes (Heteroptera: Alydidae)]. Giving up eight (42.1%) native species, 11 (57.9%) non-native species and 14 (73.7%) pest species [three natives species (15.8%) and 11 non-natives species (57.9%)]. The abundant species were M. marginella (39.9%), Poecilocapsus sp. (14.4%), Au. indica (11.4%), Ph. cruciferae (10.4%), C. sulphurea (4.6%), H. misippus (3.7%), L. hirta (3.4%), Ah. crassivora (2.4%) while 11 species (57.9%) were rare (<2.2% each). Insects associated with cowpea consisted mostly of non-native species and the situation calls for more research on the bio-ecology of recorded pests. Cowpea plants’ insect assemblage mostly presented in Bockle and Dang, a fairly significant regeneration force (Zipf and Zipf-Mandelbrot functioning models) and all conditions combine to soar. Due to the numerical and behavioural dominance of non-native insects, a significant number of resources are potentially exploitable. In due course, once the invaders would monopolize available resources and saturate the localities, they would not allow native species the niche opportunities to re-establish themselves. The consequences of loosing native species, which may well interact with the endemic flora and fauna, will be of extreme concern. VL - 7 IS - 2 ER -