Aim of the study: Chronic kidney disease is characterized by elevated iFGF-23 level, which is known to regulate phosphate, little is known about the relationship between iFGF-23 and phosphate homeostasis in posttransplant patients, however. We will look at the iFGF-23 level and correlate it with sKlotho, and 1,25 (OH)2 D3 Vitamin in posttransplant patients. Material and methods: This study was conducted using 60 kidney transplant patients. 34 healthy subjects enrolled as a control group. Blood samples were withdrawn for measuring the levels of serum iFGF-23, sKlotho, 1,25 (OH)2 D3 Vitamin, Calcium, Phosphorus, iPTH, 25 (OH) D vitamin. CKD-EPI is used to calculate GFR. Results: iFGF-23 levels were elevated in the posttransplant period compared with healthy subjects. iFGF-23 levels were measured as 263.64±153.08 pg/ml in transplant patients and 155.05±73.40 pg/ml within the control group. sKlotho levels were measured as 2.82±1.76 ng/ml and 3.72±3.59 ng/ml in transplant patients and control groups respectively. 1,25 (OH)2 D3 Vitamin levels were measured as 49.56±13.73 pg/ml and 48.42±12.13 pg/ml in transplant patients and control group respectively. The results of this study revealed a significant correlation between iFGF-23 and sKlotho both in transplant patients and in the control group. Conclusions: Significantly elevated iFGF-23 and iPTH level accompanied by decreased GFR activity suggests a progressive deficiency in phosphate homeostasis.
Published in | Biochemistry and Molecular Biology (Volume 5, Issue 2) |
DOI | 10.11648/j.bmb.20200502.11 |
Page(s) | 12-17 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2020. Published by Science Publishing Group |
iFGF-23, sKlotho, 1, 25 (OH)2 D3, Kidney Transplantation
[1] | Bergwitz, C. and H. Juppner, Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med, 2010. 61: p. 91-104. |
[2] | Gutierrez, O., et al., Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol, 2005. 16 (7): p. 2205-15. |
[3] | Prasad, N., et al., FGF23 is associated with early post-transplant hypophosphataemia and normalizes faster than iPTH in living donor renal transplant recipients: a longitudinal follow-up study. Clin Kidney J, 2016. 9 (5): p. 669-76. |
[4] | Hu, M. C. and O. W. Moe, Klotho as a potential biomarker and therapy for acute kidney injury. Nat Rev Nephrol, 2012. 8 (7): p. 423-9. |
[5] | Kurosu, H., et al., Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem, 2006. 281 (10): p. 6120-3. |
[6] | Sawires, H. K., et al., Serum klotho: relation to fibroblast growth factor-23 and other regulators of phosphate metabolism in children with chronic kidney disease. Nephron, 2015. 129 (4): p. 293-9. |
[7] | Wolf, M., Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int, 2012. 82 (7): p. 737-47. |
[8] | Ambuhl, P. M., et al., Metabolic aspects of phosphate replacement therapy for hypophosphatemia after renal transplantation: impact on muscular phosphate content, mineral metabolism, and acid/base homeostasis. Am J Kidney Dis, 1999. 34 (5): p. 875-83. |
[9] | Green, J., et al., Evidence for a PTH-independent humoral mechanism in post-transplant hypophosphatemia and phosphaturia. Kidney Int, 2001. 60 (3): p. 1182-96. |
[10] | Saito, H., et al., Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha, 25-dihydroxyvitamin D3 production. J Biol Chem, 2003. 278 (4): p. 2206-11. |
[11] | Tony, E., et al., Serum changes in fibroblast growth factor-23 and in parameters of phosphorus metabolism after renal transplantation. Journal of The Egyptian Society of Nephrology and Transplantation, 2018. 18 (2): p. 46-56. |
[12] | Bleskestad, I. H., et al., Soluble Klotho and intact fibroblast growth factor 23 in long-term kidney transplant patients. Eur J Endocrinol, 2015. 172 (4): p. 343-50. |
[13] | Economidou, D., et al., FGF-23 Levels before and after Renal Transplantation. J Transplant, 2009. 2009: p. 379082. |
[14] | Tomida, K., et al., Dialysis vintage and parathyroid hormone level, not fibroblast growth factor-23, determines chronic-phase phosphate wasting after renal transplantation. Bone, 2012. 51 (4): p. 729-736. |
[15] | Saddadi, F., et al., Impact of FGF23 level on calcium and phosphorus levels in post-renal transplantation. J Renal Inj Prev, 2017. 6 (2): p. 99-102. |
[16] | Sánchez Fructuoso, A. I., et al., Role of fibroblast growth factor 23 (FGF23) in the metabolism of phosphorus and calcium immediately after kidney transplantation. Transplantation proceedings, 2012. 44 (9): p. 2551-2554. |
[17] | Mehrotra, S., R. K. Sharma, and M. R. Patel, Vitamin D, 1, 25-Dihydroxyvitamin D, FGF23, and Graft Function after Renal Transplantation. Indian J Nephrol, 2019. 29 (4): p. 242-247. |
[18] | Komaba, H., M. Koizumi, and M. Fukagawa, Parathyroid resistance to FGF23 in kidney transplant recipients: back to the past or ahead to the future? Kidney Int, 2010. 78 (10): p. 953-5. |
[19] | Krajisnik, T., et al., Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney International, 2010. 78 (10): p. 1024-1032. |
[20] | Dhayat, N. A., et al., Parathyroid Hormone and Plasma Phosphate Are Predictors of Soluble α-Klotho Levels in Adults of European Descent. J Clin Endocrinol Metab, 2020. 105 (4). |
[21] | Olauson, H., et al., Parathyroid-specific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS genetics, 2013. 9 (12): p. e1003975-e1003975. |
[22] | Cianciolo, G., et al., Vitamin D in Kidney Transplant Recipients: Mechanisms and Therapy. American Journal of Nephrology, 2016. 43 (6): p. 397-407. |
[23] | Tan, S.-J., et al., Mineral adaptations following kidney transplantation. Transplant International, 2017. 30 (5): p. 463-473. |
[24] | Kim, H. R., et al., Circulating sKlotho Levels in CKD and Relationship to Progression. American Journal of Kidney Diseases, 2013. 61 (6): p. 899-909. |
[25] | Seiler, S., et al., Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney International, 2013. 83 (1): p. 121-128. |
[26] | Ben-Dov, I. Z., et al., The parathyroid is a target organ for FGF23 in rats. J Clin Invest, 2007. 117 (12): p. 4003-8. |
[27] | Meir, T., et al., Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription. Kidney Int, 2014. 86 (6): p. 1106-15. |
APA Style
Ayse Senelmis, Ozge Tugce Pasaoglu, Ozant Helvaci, Ulver Derici, Hatice Pasaoglu. (2020). Serum iFGF-23, sKlotho, and 1,25 (OH)2 D3 Vitamin Levels in Kidney Transplant. Biochemistry and Molecular Biology, 5(2), 12-17. https://doi.org/10.11648/j.bmb.20200502.11
ACS Style
Ayse Senelmis; Ozge Tugce Pasaoglu; Ozant Helvaci; Ulver Derici; Hatice Pasaoglu. Serum iFGF-23, sKlotho, and 1,25 (OH)2 D3 Vitamin Levels in Kidney Transplant. Biochem. Mol. Biol. 2020, 5(2), 12-17. doi: 10.11648/j.bmb.20200502.11
AMA Style
Ayse Senelmis, Ozge Tugce Pasaoglu, Ozant Helvaci, Ulver Derici, Hatice Pasaoglu. Serum iFGF-23, sKlotho, and 1,25 (OH)2 D3 Vitamin Levels in Kidney Transplant. Biochem Mol Biol. 2020;5(2):12-17. doi: 10.11648/j.bmb.20200502.11
@article{10.11648/j.bmb.20200502.11, author = {Ayse Senelmis and Ozge Tugce Pasaoglu and Ozant Helvaci and Ulver Derici and Hatice Pasaoglu}, title = {Serum iFGF-23, sKlotho, and 1,25 (OH)2 D3 Vitamin Levels in Kidney Transplant}, journal = {Biochemistry and Molecular Biology}, volume = {5}, number = {2}, pages = {12-17}, doi = {10.11648/j.bmb.20200502.11}, url = {https://doi.org/10.11648/j.bmb.20200502.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bmb.20200502.11}, abstract = {Aim of the study: Chronic kidney disease is characterized by elevated iFGF-23 level, which is known to regulate phosphate, little is known about the relationship between iFGF-23 and phosphate homeostasis in posttransplant patients, however. We will look at the iFGF-23 level and correlate it with sKlotho, and 1,25 (OH)2 D3 Vitamin in posttransplant patients. Material and methods: This study was conducted using 60 kidney transplant patients. 34 healthy subjects enrolled as a control group. Blood samples were withdrawn for measuring the levels of serum iFGF-23, sKlotho, 1,25 (OH)2 D3 Vitamin, Calcium, Phosphorus, iPTH, 25 (OH) D vitamin. CKD-EPI is used to calculate GFR. Results: iFGF-23 levels were elevated in the posttransplant period compared with healthy subjects. iFGF-23 levels were measured as 263.64±153.08 pg/ml in transplant patients and 155.05±73.40 pg/ml within the control group. sKlotho levels were measured as 2.82±1.76 ng/ml and 3.72±3.59 ng/ml in transplant patients and control groups respectively. 1,25 (OH)2 D3 Vitamin levels were measured as 49.56±13.73 pg/ml and 48.42±12.13 pg/ml in transplant patients and control group respectively. The results of this study revealed a significant correlation between iFGF-23 and sKlotho both in transplant patients and in the control group. Conclusions: Significantly elevated iFGF-23 and iPTH level accompanied by decreased GFR activity suggests a progressive deficiency in phosphate homeostasis.}, year = {2020} }
TY - JOUR T1 - Serum iFGF-23, sKlotho, and 1,25 (OH)2 D3 Vitamin Levels in Kidney Transplant AU - Ayse Senelmis AU - Ozge Tugce Pasaoglu AU - Ozant Helvaci AU - Ulver Derici AU - Hatice Pasaoglu Y1 - 2020/04/28 PY - 2020 N1 - https://doi.org/10.11648/j.bmb.20200502.11 DO - 10.11648/j.bmb.20200502.11 T2 - Biochemistry and Molecular Biology JF - Biochemistry and Molecular Biology JO - Biochemistry and Molecular Biology SP - 12 EP - 17 PB - Science Publishing Group SN - 2575-5048 UR - https://doi.org/10.11648/j.bmb.20200502.11 AB - Aim of the study: Chronic kidney disease is characterized by elevated iFGF-23 level, which is known to regulate phosphate, little is known about the relationship between iFGF-23 and phosphate homeostasis in posttransplant patients, however. We will look at the iFGF-23 level and correlate it with sKlotho, and 1,25 (OH)2 D3 Vitamin in posttransplant patients. Material and methods: This study was conducted using 60 kidney transplant patients. 34 healthy subjects enrolled as a control group. Blood samples were withdrawn for measuring the levels of serum iFGF-23, sKlotho, 1,25 (OH)2 D3 Vitamin, Calcium, Phosphorus, iPTH, 25 (OH) D vitamin. CKD-EPI is used to calculate GFR. Results: iFGF-23 levels were elevated in the posttransplant period compared with healthy subjects. iFGF-23 levels were measured as 263.64±153.08 pg/ml in transplant patients and 155.05±73.40 pg/ml within the control group. sKlotho levels were measured as 2.82±1.76 ng/ml and 3.72±3.59 ng/ml in transplant patients and control groups respectively. 1,25 (OH)2 D3 Vitamin levels were measured as 49.56±13.73 pg/ml and 48.42±12.13 pg/ml in transplant patients and control group respectively. The results of this study revealed a significant correlation between iFGF-23 and sKlotho both in transplant patients and in the control group. Conclusions: Significantly elevated iFGF-23 and iPTH level accompanied by decreased GFR activity suggests a progressive deficiency in phosphate homeostasis. VL - 5 IS - 2 ER -