Research Article | | Peer-Reviewed

Köppen–Geiger Climate Classification in the Pannonian Basin According to SSP5-8.5 Scenario

Received: 25 September 2023     Accepted: 13 October 2023     Published: 28 October 2023
Views:       Downloads:
Abstract

The Köppen–Geiger climate classification is used to determine climate types in region of Pannonian Basin with data from the sixth phase of the Coupled Model Intercomparison Project. The study covers a period from years 2021 until 2100, and it shows how certain climate types are changing in percentage in thirty-year averages for six periods. In the period 1960-1990 years of the last century, the dominant climate type was warm summer humid continental climate (Dfb) with 74% and 98% presences in the region according Kottek and Peel, respectively. The results show that the change of this climate type to the humid subtropical climate type (Cfa) began in the first half of the 21st century. The complete dominance of humid subtropical climate type in the most areas of the Pannonian Basin characterized the second half of the 21st century. Also, results show the creation of a warm summer Mediterranean climate type (Csa), which according to certain simulations, is present from 10% to 30% on average in the region. In the central part of the region, a cold desert climate type (Bsk) is formed with approximately 6% presences in the region. This creation of climate types in some parts of the region shows that in the second half of 21st century, drier and a warmer climate are expected.

Published in International Journal of Atmospheric and Oceanic Sciences (Volume 7, Issue 2)
DOI 10.11648/j.ijaos.20230702.12
Page(s) 31-49
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Köppen–Geiger Classification, Climate, Pannonian Basen, CMIP6, Temperature, Precipitation

References
[1] Ács F, Zsákai A, Kristóf E, Szabó IS, Breuer H (2020) Carpathian Basin climate according to Köppen and a clothing resistance scheme. Theoretical and Applied Climatology (2020) 141: 299–307, https://doi.org/10.1007/s00704-020-03199-z
[2] Anav A, Ruti PM, Artale V, Valentini R (2010) Modelling the effects of land-cover changes on surface climate in the Mediterranean region. Clim. Res., 41, 91-104.
[3] Beck EH, Zimmermann EN, McVicar RT, Vergopolan N, Berg A, Wood FE (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. SCIENTIFIC DATA, 5: 180214, doi: 10.1038/sdata.2018.214.
[4] Brovkin V, Boysen L, Arora VK, Boisier JP, Cadule P, Chini L, Claussen M, Friedlingtein P, Gayler V, 382 Van Den Hurk BJJM, Hurtt GC, Jones CD, Kato E, De Noblet-Ducourde N, Pacifico F, Pongratz J, 383 Weiss M (2013) Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land 16384 Carbon Storage in CMIP5 Projections for the Twenty-First Century. J Clim, doi: 10.1175/JCLI-D-12-385 00623.1.
[5] Calvin K, Lamberty BB, Clarke L, Edmonds J, Eom J, Hartina C, Kim S, Kyle P, Link R, Moss R, McJeon H, Patel P, Smith S, Waldhoff S, Wise M (2016) The SSP4: A world of deepening inequality. Global Environmental Change, https://doi.org/10.1016/j.gloenvcha.2016.06.010
[6] Crocetti L, Forkel M, Fischer M, Jurečka F, Grlj A, Salentinig A, Trnka M, Anderson M, Ng W-T, Kokalj Ž, Bucur A, Dorigo W (2020) Earth Observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe): current state and future directions. Regional Environmental Change (2020) 20: 123, https://doi.org/10.1007/s10113-020-01710-w
[7] Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A,•Halíčková M,•Macková J, Riemann D, Luterbacher J,•Böhm R (2009) Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Climatic Change, doi 10.1007/s10584-009-9724-x.
[8] EEA (European Environment Agency) Climate change, impacts and vulnerability in Europe 2012. EEA Report No 1/2012, ISSN 1725-9177, ISBN 978-92-9213-346-7, doi: 10.2800/66071.
[9] EEA (European Environment Agency) Climate change, impacts and vulnerability in Europe 2016. EEA Report No 1/2017, ISSN 1977-8449, ISBN 978-92-9213-835-6, doi: 10.2800/534806.
[10] EEA (European Environment Agency) Water resources across Europe confronting water stress: an updated assessment 2021. Report No 12/2021, ISBN 978-92-9480-391-7, ISSN 1977-8449, doi: 10.2800/320975.
[11] Fricko O, Havlik P, Rogelj J, Klimont Z, Gusti M, Johnson N, Kolp P, Strubegger M, Valin H, Amann M, Ermolieva T, Forsell N, Herrero M et al., (2017) The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, http://dx.doi.org/10.1016/j.gloenvcha.2016.06.004
[12] Friedlingstein P, Jones MW, O'Sullivan M, Andrew MR, Hauck J, Peters PG, Peters W, Pongratz J, Sitch S, Le Quéré C et al., (2019) Global Carbon Budget 2019. Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, 2019
[13] Friedlingstein P, Jones MW, O'Sullivan M, Andrew MR, Hauck J, Peters PG, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell GJ, Ciais P, Jackson BR et al., (2020) Global Carbon Budget 2020. Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.
[14] Fujimori S, Hasegawa T, Masui T, Takahashi K, Herran SD, Dai H, Hijioka Y, Kainuma M (2017) SSP3: AIM implementation of Shared Socioeconomic Pathways. Global Environmental Change, http://dx.doi.org/10.1016/j.gloenvcha.2016.06.009
[15] Gavrilov MB, Marković SB, Randall JS, Tošić I, Zeeden C, Obreht I, Sipos G, Ruman A, Putniković S, Emunds K, Perić Z, Hambach U, Lehmkuhl F (2017) Prevailing surface winds in Northern Serbia in the recent and past time periods; modern-and past dust deposition. Aeolian Research. http://dx.doi.org/10.1016/j.aeolia.2017.07.008
[16] Geiger Rudolf (1954). "Klassifikation der Klimate nach W. Köppen" [Classification of climates after W. Köppen]. Landolt-Börnstein –Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie. Berlin: Springer. 3. pp. 603–607.
[17] Geiger Rudolf (1961). Überarbeitete Neuausgabe von Geiger, R.: Köppen-Geiger / Klima der Erde. (Wandkarte 1:16 Mill.) – Klett-Perthes, Gotha.
[18] IPCC (Intergovernmental Panel on Climate Change) 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson-Delmotte V, Zhai P, Pirani A, Connors LS, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis IM, Huang M, Leitzell K, Lonnoy E, Matthews RBJ, Maycock KT, Waterfield T, Yelekçi O, Yu R, Zhou B. ISBN 978-92-9169-158-6.
[19] Hrnjak I, Lukić T, Gavrilov MB, Marković SB, Unkašević M and Tošić I (2014). Aridity in Vojvodina, Serbia. Theor. Appl. Climatol., 115, 323-332, doi: 10.1007./s00704-013-0893-1.
[20] Köppen W, (1900) Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt (Attempted climate classification in relation to plant distributions). Geogr. Zeitschrift, 6, 593-611, 657-679.
[21] Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated Article in Meteorologische Zeitschrift May 2006. doi: 10.1127/0941-2948/2006/0130.
[22] Kriegler E, Bauer N, Popp A, Humpenöder F, Leimbach M, Strefler J, Baumstark L, Bodirsky LB, Hilaire J, Klein D, Mouratiadou I, Weindl I, Bertram C, Dietrich JP et al., (2017) Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, http://dx.doi.org/10.1016/j.gloenvcha.2016.05.015
[23] Laloyaux P, Balmaseda M, Dee D, Mogensen K and Janssen P (2016) A coupled data assimilation system for climate reanalysis. ECMWF, Reading, UK, Q. J. R. Meteorol. Soc. 142: 65–78. doi: 10.1002/qj.2629.
[24] Le Quéré C, Moriarty R, Andrew RM et al. (2014) Global carbon budget 2014. Earth System Science Data 7 (1): 47-85.
[25] Le Quéré C, Moriarty R, Andrew RM, Canadell JG et al. (2015) Global Carbon Budget 2015. Earth System Science Data 7 (2): 349-396.
[26] Le Quéré C, Andrew RM, Canadell JG, Sitch S et al. (2016) Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605-649. https://doi.org/10.5194/essd-8-605-2016, 2016.
[27] Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning CA, Korsbakken IJ, Peters PG, Canadell GJ, Jackson BR, Sitch S, Bodenet AT al., (2017) Global Carbon Budget 2017, Earth Syst. Sci. Data, 10, 405–448, 2018, https://doi.org/10.5194/essd-10-405-2018.
[28] Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning CA, Korsbakken IJ, Peters PG, Canadell GJ, Jackson BR, Sitch S, Bodenet AT al., (2018) Global Carbon Budget 2018, Earth Syst. Sci. Data, 10, 2141–2194, 2018, https://doi.org/10.5194/essd-10-2141-2018
[29] Mihailovic DT, Lalic B, Djurdjevic V et al. (2015) Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the SRES-A1B and SRES-A2. Int. J. Climatol. 35: 3320–3334, doi: 10.1002/joc.4209.
[30] Milovanovic B, Ducic V, Radovanovic M and Milivojevic M (2017) Climate regionalization of Serbia according to Köppen–Geiger climate classification. J. Geogr. Inst. Cvijic. 67 (2) (103–114), doi: https://doi.org/10.2298/IJGI1702103M.
[31] O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque JF, Lowe J, Meehl AG, Moss R, Riahi K, and Sanderson MB (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, 2016, doi: 10.5194/gmd-9-3461-2016.
[32] Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007
[33] Pitman AJ, et al., 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi: 10.1029/2009GL039076.
[34] Port U, Brovkin V, and Claussen M (2012) The influence of vegetation dynamics on anthropogenic climate change, Earth Syst. Dynam., 3, 233–243, https://doi.org/10.5194/esd-3-233-2012, 2012
[35] Riahi K, van Vuuren PD, Kriegler E, Edmonds J, O’Neill CB, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma CJ, Samir KC, Leimbach M et al., (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009
[36] Rogelj J, Popp A, Calvin VK, Luderer G, Emmerling J, Gernaat D, Fujimori S, Strefler J, Hasegawa T, Marangoni G, Krey V, Kriegler E, Riahi K, van Vuuren PD et al., (2018) Scenarios towards limiting global mean temperature increase below 1.5°C. Nature Climate Change, https://doi.org/10.1038/s41558-018-0091-3
[37] Ruman A, (2020) Modelling climate types in South Pannonian Basin, Serbia by applying the Köppen–Geiger climate classification. Modeling Earth Systems and Environment (2020) 6: 1303–1313, https://doi.org/10.1007/s40808-020-00773-2
[38] Rubel F, Kottek M, (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, Vol. 19, No. 2, 135-141, doi 10.1127/0941-2948/2010/0430.
[39] Sanchez E, Gaertner MA, Gallardo C, Padorno E, Arribas A, Castro M (2007) Impacts of a change in vegetation description on simulated European summer present-day and future climates. Clim. Dyn., 29, 319–332.
[40] Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M (2018) GPCC Full Data Monthly Product Version 2018 at 0.25°. Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data, doi: 10.5676/DWD_GPCC/FD_M_V2018_025.
[41] Taylor KE, Stouffer JR, Meehl AG (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc, 93, 485–498, doi: 10.1175/BAMS-D-11–00094.1.
[42] Tošić I, Putniković S, Gavrilov MB, Marković BS, Ruman A (2018) Seasonal prevailing surface winds in Northern Serbia. Theor Appl Climatol, doi 10.1007/s00704-017-2044.
[43] van Vuuren PD, Stehfest E, Gernaat EHJD, Doelman CJ, van den Berg M, Harmsen M, de Boer SH, Bouwman FL et al., (2017) Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, http://dx.doi.org/10.1016/j.gloenvcha.2016.05.008
[44] Vukovic JA, Vujadinovic PM, Rendulic MS, Djurdjevic V, Ruml M et al., (2018). THERMAL SCIENCE: Year 2018, Vol. 22, No. 6A, pp. 2267-2280, https://doi.org/10.2298/TSCI180411168V.
Cite This Article
  • APA Style

    Albert Ruman, Anna Ruman. (2023). Köppen–Geiger Climate Classification in the Pannonian Basin According to SSP5-8.5 Scenario. International Journal of Atmospheric and Oceanic Sciences, 7(2), 31-49. https://doi.org/10.11648/j.ijaos.20230702.12

    Copy | Download

    ACS Style

    Albert Ruman; Anna Ruman. Köppen–Geiger Climate Classification in the Pannonian Basin According to SSP5-8.5 Scenario. Int. J. Atmos. Oceanic Sci. 2023, 7(2), 31-49. doi: 10.11648/j.ijaos.20230702.12

    Copy | Download

    AMA Style

    Albert Ruman, Anna Ruman. Köppen–Geiger Climate Classification in the Pannonian Basin According to SSP5-8.5 Scenario. Int J Atmos Oceanic Sci. 2023;7(2):31-49. doi: 10.11648/j.ijaos.20230702.12

    Copy | Download

  • @article{10.11648/j.ijaos.20230702.12,
      author = {Albert Ruman and Anna Ruman},
      title = {Köppen–Geiger Climate Classification in the Pannonian Basin According to SSP5-8.5 Scenario},
      journal = {International Journal of Atmospheric and Oceanic Sciences},
      volume = {7},
      number = {2},
      pages = {31-49},
      doi = {10.11648/j.ijaos.20230702.12},
      url = {https://doi.org/10.11648/j.ijaos.20230702.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijaos.20230702.12},
      abstract = {The Köppen–Geiger climate classification is used to determine climate types in region of Pannonian Basin with data from the sixth phase of the Coupled Model Intercomparison Project. The study covers a period from years 2021 until 2100, and it shows how certain climate types are changing in percentage in thirty-year averages for six periods. In the period 1960-1990 years of the last century, the dominant climate type was warm summer humid continental climate (Dfb) with 74% and 98% presences in the region according Kottek and Peel, respectively. The results show that the change of this climate type to the humid subtropical climate type (Cfa) began in the first half of the 21st century. The complete dominance of humid subtropical climate type in the most areas of the Pannonian Basin characterized the second half of the 21st century. Also, results show the creation of a warm summer Mediterranean climate type (Csa), which according to certain simulations, is present from 10% to 30% on average in the region. In the central part of the region, a cold desert climate type (Bsk) is formed with approximately 6% presences in the region. This creation of climate types in some parts of the region shows that in the second half of 21st century, drier and a warmer climate are expected.
    },
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Köppen–Geiger Climate Classification in the Pannonian Basin According to SSP5-8.5 Scenario
    AU  - Albert Ruman
    AU  - Anna Ruman
    Y1  - 2023/10/28
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ijaos.20230702.12
    DO  - 10.11648/j.ijaos.20230702.12
    T2  - International Journal of Atmospheric and Oceanic Sciences
    JF  - International Journal of Atmospheric and Oceanic Sciences
    JO  - International Journal of Atmospheric and Oceanic Sciences
    SP  - 31
    EP  - 49
    PB  - Science Publishing Group
    SN  - 2640-1150
    UR  - https://doi.org/10.11648/j.ijaos.20230702.12
    AB  - The Köppen–Geiger climate classification is used to determine climate types in region of Pannonian Basin with data from the sixth phase of the Coupled Model Intercomparison Project. The study covers a period from years 2021 until 2100, and it shows how certain climate types are changing in percentage in thirty-year averages for six periods. In the period 1960-1990 years of the last century, the dominant climate type was warm summer humid continental climate (Dfb) with 74% and 98% presences in the region according Kottek and Peel, respectively. The results show that the change of this climate type to the humid subtropical climate type (Cfa) began in the first half of the 21st century. The complete dominance of humid subtropical climate type in the most areas of the Pannonian Basin characterized the second half of the 21st century. Also, results show the creation of a warm summer Mediterranean climate type (Csa), which according to certain simulations, is present from 10% to 30% on average in the region. In the central part of the region, a cold desert climate type (Bsk) is formed with approximately 6% presences in the region. This creation of climate types in some parts of the region shows that in the second half of 21st century, drier and a warmer climate are expected.
    
    VL  - 7
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Republic Hydrometeorological Institute of Serbia, Belgrade, Serbia

  • Republic Hydrometeorological Institute of Serbia, Belgrade, Serbia

  • Sections