The objective of this work is to study the organoleptic and physicochemical properties of the essential oil of Limon (Citrus limon) grown in Collo, Skikda city (Algeria). The evaluation of the yield of essential oil extracted by cold expression is: 1.0%. The qualitative and quantitative analysis by (GC / MS) of the essential oil allowed to identify 53 compounds which represent: 99.938%, the main ones being: Limonene (61.647%), β.-Pinene (13.852%), γ.-Terpinene (9.959%) followed by other low-molecules: α.-Pinene (2.279%), Myrcene (1.888%), α.-Citral (1.702%), β.-Citral (1.046%), β.-Bisabolene (1.026%) totaling approximately: 93.399%. The density is: 0.855 ± 0.005. The measurement of the refractive index calculated and brought to 20°C is of low light refraction: 1.4700 ± 0.005. The boiling and evaporation index are values: (180-188°C).
Published in | World Journal of Applied Chemistry (Volume 2, Issue 3) |
DOI | 10.11648/j.wjac.20170203.14 |
Page(s) | 96-100 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Lemon, Citrus Limon, Essential Oil, Chemical Composition, Density, Refractive Index, Boiling and Evaporation Index
[1] | A. Robert et A. Lobstein. Plantes aromatiques: épices, aromates, condiments et huiles essentielles. Ed: Tec & Doc, Lavoisier, Paris. (2005). 522. |
[2] | D. Roux. Conseil en aromathérapie, 2 ème édition, pro-officina. (2008) 187. |
[3] | A. Basil, M. M. Jimenez-carmonna and A. A. Clifford. Extraction of Rosemary by super-heated water. Journal of food chemistry. 46 (1998) 5205-5209. |
[4] | AFNOR. NF ISO 279, (T 75-111). (1999). Essential oils - Determination of relative density at 20 degrees C - Reference method. |
[5] | AFNOR. NF ISO 279, (T 75-112). (2000). Recueil des normes. Les huiles essentielles. Tome 1. Echantillonnage et méthodes d’analyse. |
[6] | J. R. Soares, T. C. P. Dinis, A. P. Cunha and L. M. Almeida. Antioxidant activity of some extracts of Thymus zygis. Free Radical Research. 26 (1997) 469-478. |
[7] | V. Jeannot, J. Chahboun, D. Russell and P. Baret. Quantification and determination of chemical composition of essential oil extracted from natural orange blossom water (Citrus aurantium L. ssp. aurantium). International Journal of Aromtherapy. 15 (2) (2005) 94-97. |
[8] | R. Fuselli, B. Susana, D. L. R. Garcia, J. Martin and F. Rosalia. Chemical composition and antimicrobial activity of citrus essences on honeybee bacterial pathogen Paenibacillus larvae, the causal agent of American foulbrood. World Journal of Microbiology and Biotechnology. 24 (2008) 2067-2072. |
[9] | B. Rega, N. Fournier, E. Guichard and R. Russell. Citrus flavour. Journal of Agricutural and Food Chemistry. 51 (2003) 117-133. |
[10] | M. Kelen and B. Tepe. Chemical composition, antioxydant and antimicrobial proprieties of the essential oils of three Salvia species from Turkish flora. Bioresource Technology. 99 (2008) 4096-4104. |
[11] | S. A. Vekiari, E. F. Protopapadakis, P. Papadopoulou, D. Papanicolaou, C. Panou and M. Vamvakias. Composition and seasonal variation of essential oil from leaves and peel of a lemon variety. journal of agrucultural and food chemistry. 5 (1) (2002) 147-153. |
[12] | N. Vasudeva and T. Sharma. Chemical Composition and Antimicrobial Activity of Essential Oil of Citrus limettioides Tanaka. Journal of Pharmaceutical Technology & Drug Research. (2012) 1-7. |
[13] | L. Kamaliroosta, M. Zolfaghari, S. Shafiee, K. Larijani and M. Zojaji. Chemical Identifications of Citrus Peels Essential Oils. Journal of Food Biosciences and Technology, Islamic Azad University, Science and Research Branch. (2016) 69-76. |
[14] | Z. Hellal. Contribution à l’étude des propriétés antibactériennes et antioxcidantes de certaines huiles essentielles extraites des Citrus. Application sur la sardine (sardina pilchardus). (2011) 1. |
[15] | S. Moufida and B. Marzouk. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry. 62 (8) (2003) 1283-1289. |
[16] | N. Belletti, M. Nidagijimana, C. Sisto, M. E. Guerzoni, R. Lanciotti and F. Gardini. Evaluation of the antimicrobial activity of Citrus essences on Saccharomyces cerevisiae. Journal Agricutural Food Chemistry. 52 (23) (2004) 6932-6938. |
[17] | S. U. Rehman, S. Hussein, H. Nawaz, A. M. Mushtaq, M. A. Murtaza and A. J. Rizvi. Inhibitory effect of citrus peel essential oils on the microbial growth of bread. Pakistanian Journal of Nutrition. 6 (6) (2007) 558-561. |
[18] | Y. Nogata, K. Sakamoto, H. Shiratsuchi, T. Ishii, M. Yano and H. Ohta. Flavonoid composition of fruit tissue of citrus species. Bioscience Biotechnology and Biochemistry. 70(1) (2006) 178-192. |
[19] | F. Senatore, N. A. Arnold and F. Piozzi. Chemical composition of the essential oil of Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon J Chromatogr A. 1052 (2004) 237-240. |
[20] | R. W. Wolford, J. W. Kesterson and J. A. Attaway. Physicochemical properties of citrus essential oils from Florida. Journal of Agricultural and Food Chemistry. 19 (6) (1971) 1097-1102. |
[21] | P. E. Shaw. Review of quantitative analysis of citrus essential oils. Journal of Agricultural and Food Chemistry. 27 (1979) 246-257. |
[22] | M. H. Boelens. A critical review on the chemical composition of Citrus oils. Perfum Flavor. 16(2) (1991) 17-34. |
[23] | D. C. Smith, S. Forland, E. Bachanos, M. Matejka and V. Barrett. Qualitative analysis of citrus fruits extracts by GC/MS: An undergraduate experiment. Chemical Educator. 6 (2001) 28-31. |
[24] | N. T. Minh Tu, L. X. Thank, A. Une, H. Ukeda and M. Sawamura. Volatile constituents of Vietnamese pummelo, orange, tangerine and limepeel oils. Flavour and Fragrance Journal. 17 (2002) 169-174. |
[25] | M. J. Kim , K. W. Yang , S. S. Kim , S. M. Park , K. J. Park , K. S. Kim , Y. H. Choi , K. K. Cho , C. G. Hyun . Chemical composition and anti-inflammation activity of essential oils from Citrus unshiu flower. Nat Prod Commun. 9(5) (2014) 727-30. |
[26] | M. A. Ferhat, B. Y. Meklati, F. Chemat. Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation. (2007) 494-504. |
APA Style
Hicham Boughendjioua, Samah Djeddi. (2017). Organoleptic and Physicochemical Properties of Algerian Lemon Essential Oil. World Journal of Applied Chemistry, 2(3), 96-100. https://doi.org/10.11648/j.wjac.20170203.14
ACS Style
Hicham Boughendjioua; Samah Djeddi. Organoleptic and Physicochemical Properties of Algerian Lemon Essential Oil. World J. Appl. Chem. 2017, 2(3), 96-100. doi: 10.11648/j.wjac.20170203.14
@article{10.11648/j.wjac.20170203.14, author = {Hicham Boughendjioua and Samah Djeddi}, title = {Organoleptic and Physicochemical Properties of Algerian Lemon Essential Oil}, journal = {World Journal of Applied Chemistry}, volume = {2}, number = {3}, pages = {96-100}, doi = {10.11648/j.wjac.20170203.14}, url = {https://doi.org/10.11648/j.wjac.20170203.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjac.20170203.14}, abstract = {The objective of this work is to study the organoleptic and physicochemical properties of the essential oil of Limon (Citrus limon) grown in Collo, Skikda city (Algeria). The evaluation of the yield of essential oil extracted by cold expression is: 1.0%. The qualitative and quantitative analysis by (GC / MS) of the essential oil allowed to identify 53 compounds which represent: 99.938%, the main ones being: Limonene (61.647%), β.-Pinene (13.852%), γ.-Terpinene (9.959%) followed by other low-molecules: α.-Pinene (2.279%), Myrcene (1.888%), α.-Citral (1.702%), β.-Citral (1.046%), β.-Bisabolene (1.026%) totaling approximately: 93.399%. The density is: 0.855 ± 0.005. The measurement of the refractive index calculated and brought to 20°C is of low light refraction: 1.4700 ± 0.005. The boiling and evaporation index are values: (180-188°C).}, year = {2017} }
TY - JOUR T1 - Organoleptic and Physicochemical Properties of Algerian Lemon Essential Oil AU - Hicham Boughendjioua AU - Samah Djeddi Y1 - 2017/08/30 PY - 2017 N1 - https://doi.org/10.11648/j.wjac.20170203.14 DO - 10.11648/j.wjac.20170203.14 T2 - World Journal of Applied Chemistry JF - World Journal of Applied Chemistry JO - World Journal of Applied Chemistry SP - 96 EP - 100 PB - Science Publishing Group SN - 2637-5982 UR - https://doi.org/10.11648/j.wjac.20170203.14 AB - The objective of this work is to study the organoleptic and physicochemical properties of the essential oil of Limon (Citrus limon) grown in Collo, Skikda city (Algeria). The evaluation of the yield of essential oil extracted by cold expression is: 1.0%. The qualitative and quantitative analysis by (GC / MS) of the essential oil allowed to identify 53 compounds which represent: 99.938%, the main ones being: Limonene (61.647%), β.-Pinene (13.852%), γ.-Terpinene (9.959%) followed by other low-molecules: α.-Pinene (2.279%), Myrcene (1.888%), α.-Citral (1.702%), β.-Citral (1.046%), β.-Bisabolene (1.026%) totaling approximately: 93.399%. The density is: 0.855 ± 0.005. The measurement of the refractive index calculated and brought to 20°C is of low light refraction: 1.4700 ± 0.005. The boiling and evaporation index are values: (180-188°C). VL - 2 IS - 3 ER -