The production of nanostructures, nanocomposites and modified nanostructures for water remediation will increase because of the need for producing clean water in fast and low energy consumption ways. Nanoparticles are widely used various fields such as electronics, cosmetics, water purification, biomedical, and biotechnology. Nanoparticles can be synthesized by physical methods, chemical and biological methods. Biosynthesis of nanoparticles using biological agents have gained much attention in the area of nanotechnology in last few decades because of cost effective, nontoxic, and ecofriendly. Algae have been used to reduce metal ions and subsequently for the biosynthesis of nanoparticles. The present review is devoted to the possibility of metal nanoparticle synthesis using alga extract. The important advantages of these biological systems are an ecofriendly, economical, high-yielding, expeditious and energy-efficient method. This review is mainly focused on recent progress on the utilization of algae of various classes, for the synthesis of Silver and Gold nanoparticles, their characterization and possible mechanisms.
Published in | International Journal of Atmospheric and Oceanic Sciences (Volume 2, Issue 1) |
DOI | 10.11648/j.ijaos.20180201.12 |
Page(s) | 10-22 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Nanoparticles, Microalgae, Macroalgae, Wastewater, Biosynthesis
[1] | Edhaya Naveena, B.; Prakash, S. 2013: Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J. Pharm. Clin. Res. 6(2):179–182. |
[2] | Madhuri, S.; Maheshwar, S.; Sunil, P.; Oza, G. 2012: Nanotechnology concepts and applications, vol. 4. CRC Press, USA. |
[3] | Sutherland, K. 2008: What is nanofiltration? Filtration and Separation 45(8), 32-35. [This presents approaches to the study of nanofiltration] |
[4] | Eriksson P. 1988: Nanofiltration extends the range of membrane filtration. Environmental Progress, 7(1), 58–62. [This presents approaches to the study of nanofiltration technology] |
[5] | Ventresque, C.; Gisclon, V.; Bablon, G.; Chagneau, G. 2000: An outstanding feat of modern technology: the Mery-sur-Oise Nanofiltration Plant. Desalination, (131) 1-16. [This presents approaches to the case study of a nanofiltration plant] |
[6] | Hassaan, M. A., and Ali, H. R. 2017: Fresh Water Pollution and Heavy Metals Removal. 1st Edition, Publisher: Lambert Academic publishing, e-book [ISBN: 978-3-659-57770-3]. pp. 220. |
[7] | Ali, H. R and Hassaan, M. A., 2017: Applications of Bio-waste Materials as Green Synthesis of Nanoparticles and Water Purification, Advances in Materials. Vol. 6, No. 5, pp. 85-101. doi: 10.11648/j.am.20170605.16 |
[8] | Ali, H. R. and Hassaan, M. A. 2017: Different Techniques for Water Purification. 1st Edition, Publisher: Lambert Academic publishing, e-book [ISBN: 978-3-659-55636-4]. pp. 217 |
[9] | Hassaan, M. A., El Nemr, A., and Madkour, F. F. 2017a: Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater. Egypt. J. Aquat. Res. 43, 11–19. |
[10] | Hassaan, M. A., El Nemr, A., and Madkour, F. F. 2017b: Advanced oxidation processes of Mordant Violet 40 dye in freshwater and seawater. Egypt. J. Aquat. Res. 43, 1–9. |
[11] | Buzea, C.; Pacheco II; Robbie, K. 2007: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2 (4): 17–71. |
[12] | Kim, J. S.; Kuk, E.; Yu KN; Kim, J.; Park, S. J.; Lee, H. J. 2007: Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biomed 3: 95–101. |
[13] | Tan, Y.; Dai, X.; Li, Y.; Zhu, D. 2003: Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J. Mater. Chem. 13: 1069–1075. |
[14] | Balantrapu, K.; Goia, D. V. 2009: Silver nanoparticles for printable electronics and biological applications. J. Mater Res 24 (9): 2828–2836. |
[15] | Rodrıguez-Sánchez, L.; Blanco, M. C.; Lopez-Quintela, M. A. 2000: Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B. 104: 9683–9688. |
[16] | Taleb, A.; Petit, C.; Pileni, M. P. 1997: Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9 (4): 950–959. |
[17] | Chen, S.; Zhao, X.; Xie, H.; Liu, J.; Duan, L.; Ba, X.; Zhao, J. 2012: Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method. Appl. Surf Sci. 258: 3255–3259. |
[18] | Li, Y.; Duan, X.; Qian, Y.; Li, Y.; Liao, H. 1999: Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam. J Colloid Interface Sci. 209 (2): 347–349. |
[19] | Njagi, E. C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H. M.; Collins, J. B.; Hoag, G. E.; Suib, S. L.; Langmuir: 2011. V. 27. № 1. P. 264–271. |
[20] | Kalesh, N. S.; Nair, S. M. 2005: The Accumulation Levels of Heavy Metals (Ni, Cr, Sr, & Ag) in Marine Algae from Southwest Coast of İndia. Toxicological & Environmental Chemistry 87(2): 135-146. |
[21] | Jothinayagi, N.; Anbazhagan, C. 2009: Heavy Metal Monitoring of Rameswaram Coast by Some Sargassum species. American-Eurasian Journal of Scientific Research; 4 (2): 73-80. |
[22] | Alp, M. T.; Sen, B.; Ozbay, O. 2011: Heavy Metal Levels in Cladophora glomerata which Seasonally Occur in the Lake Hazar. Ekoloji, 20 (78): 13-17. |
[23] | Alp, M. T.; Ozbay O, Sungur, M. A. 2012: Determination of Heavy Metal Levels in Sediment and Macroalgae (Ulva sp. and Enteromorpha sp.) on the Mersin Coast 2011. Ekoloji 21, 82, 47-55. |
[24] | Labib, W.; Abou Shady, A. M.; Laila, A. M.; El Shafaay and Shimaa Hosny 2015: Ecological studies of macroalgae in Alexandria Mediterranean waters, Egypt. J. Exp. Biol. (Bot.), 11(2): 169–180. |
[25] | Palmer, C. M. 1969: A composite rating of algae tolerating organic pollution. J. Phycology; 5: 78-82. |
[26] | Loomba, L.; Scarabelli, T.; 2013: Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther Deliv 4(9): 1179–1196. |
[27] | Jain, A.; Duvvuri, L. S.; Farah, S.; Beyth, N.; Domb, A. J.; Khan, W. 2014: Antimicrobial polymers. Adv Healthcare Mater 3: 1969–1985. |
[28] | Singh, N.; Singh, S. P.; Gupta, V.; Yadav, H. K.; Ahuja, T.; Tripathy, S. S. 2013b: A process for the selective removal of arsenic from contaminated water using acetate functionalized zinc oxide nanomaterials. Environ Prog Sustain Energy 32(4):1023–1029. |
[29] | Srivastava, V.; Gusain, D.; Sharma, Y. C. 2013: Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram Int 39(8):9803–9808. |
[30] | Islam, A. A.; Ferdous, T.; Das, A. K. 2015: Photodegradation of brown CGG dye using ZnO nanoparticles synthesized by ionic template method. |
[31] | Sanna, V.; Pala, N.; Alzari, V.; Nuvoli, D.; Carcelli, M. 2016: ZnO nanoparticles with high degradation efficiency of organic dyes under sunlight irradiation. Mater Lett 162:257–260. |
[32] | Jain, N.; Bhargava, A.; Panwar, J. 2014: Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem. Eng. J. 243:549–555. |
[33] | Darvishi Cheshmeh, Soltani, R.; Rezaee, A.; Safari, M.; Khataee, A. R.; Karimi, B. 2015: Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates. Desalin Water Treat 53(6):1613–1620. |
[34] | Kruefu, V.; Ninsonti, H.; Wetchakun, N.; Inceesungvorn, B.; Pookmanee, P.; Phanichphant, S. 2012: Photocatalytic degradation of phenol using Nb-loaded ZnO nanoparticles. Eng J-CANDA 16 (3):91–100 |
[35] | Khezami, L.; Taha, K. K.; Ghiloufi, I.; El Mir, L. 2016: Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles. Water Sci Technol 73(4): 881–889. |
[36] | Lee, J.; Easteal, A. J.; Pal, U.; Bhattacharyya, D. 2009: Evolution of ZnO nanostructures in sol–gel synthesis. Curr Appl Phys 9(4):792–796. |
[37] | Mehta, S. K.; Singh, K.; Umar, A.; Chaudhary, G. R.; Singh, S. 2012: Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles. Electrochim Acta 69:128–133. |
[38] | Mezni, A.; Kouki, F.; Romdhane, S.; Warot-Fonrose, B.; Joulié, S.; Mlayah, A.; Smiri, L. S. 2012: Facile synthesis of ZnO nanocrystals in polyol. Mater Lett 86:153–156. |
[39] | Nehru, L. C.; Swaminathan, V.; Sanjeeviraja, C. 2012: Rapid synthesis of nanocrystalline ZnO by a microwave-assisted combustion method. Powder Technol 226:29–33. |
[40] | Vigneshwaran, N.; Kumar, S.; Kathe, A. A.; Varadarajan, P. V.; Prasad, V. 2006: Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology 17(20):5087. |
[41] | Modi, S.; Pathak, B.; Fulekar, M. 2015: Microbial synthesized silver nanoparticles for decolorization and biodegradation of azo dye compound. J. Environ Nanotechnol 4(2):37–46. |
[42] | Corso, C. R.; De Almeida ACM 2009: Bioremediation of dyes in textile effluents by Aspergillus oryzae. Microb Ecol 57(2):384–390. |
[43] | Gangula, A.; Podila, R.; Karanam, L.; Janardhana, C.; Rao, A. M. 2011: Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27(24):15268–15274. |
[44] | Geoprincy, G.; Saravanan, P.; Gandhi, N. N., Renganathan S 2011: A novel approach for studying the combined antimicrobial effects of silver nanoparticles and antibiotics through agar over layer method and disk diffusion method. Dig J Nanomater Biostruct 6(4):1557–1565. |
[45] | Asmathunisha, N.; Kathiresan, K. 2013: A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B 103:283–287. |
[46] | Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T. 2015: Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and the antibacterial activity against some human pathogens. Appl Nanosci 5(4):499–504. |
[47] | Azizi, S.; Namvar, F.; Mahdavi, M.; Ahmad, M. B.; Mohamad, R. 2013: Biosynthesis of silver nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials 6 (12):5942–5950. |
[48] | Suvith, V. S.; Philip, D. 2014: Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta, Part A 118:526–532. |
[49] | Soomro, R. A.; Nafady, A. 2015: Catalytic reductive degradation of methyl orange using air resilient copper nanostructures. J. Nanomater 2015:120. |
[50] | Huang, C. C.; Lo, S. L.; Lien, H. L. 2012: Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant. Chem Eng J 203:95–100. |
[51] | Namvar, F.; Azizi, S.; Ahmad, M. B.; Shameli, K.; Mohamad. R.; Mahdavi, M. Tahir, P. M. 2015: Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41(8):5723–5730. |
[52] | Ghodake, G.; Lee, D. S. 2011: Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoe 6(3):268–271. |
[53] | Tratnyek, P. G.; Johnson, R. L. 2006: Nanotechnologies for environmental cleanup. Nano Today 1 (2):44–48. |
[54] | McHenry, M. E.; Laughlin, D. E. 2000: Nano-scale materials development for future magnetic applications. Acta Mater 48(1):223–238. |
[55] | Wu, S. H.; Mou, C. Y.; Lin, H. P. 2013: Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42 (9):3862–3875. |
[56] | Mahdavi, M.; Namvar, F.; Ahmad, M. B. Mohamad, R. 2013: Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964. |
[57] | Herlekar, M.; Barve. S.; Kumar, R. 2014: Plant-mediated green synthesis of iron nanoparticles. J. Nanopart. |
[58] | Chaung, S. H.; Wu, P. F.; Kao, Y. L.; Yan, W.; Lien, H. L 2014: Nanoscale zero-valent iron for sulfide removal from digested piggery wastewater. J Nanomater. |
[59] | Fan, F. L.; Qin, Z.; Bai, J.; Rong, W. D.; Fan, F. Y.; Tian, W.; Zhao, L. 2012: Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@ SiO2 composite particles. J Environ Radioact 106:40–46. |
[60] | Ryu, A.; Jeong, S. W.; Jang, A.; Choi, H. 2011: Reduction of highly concentrated nitrate using nanoscale zero-valent iron: effects of aggregation and catalyst on reactivity. Appl Catal B 105 (1):128–135. |
[61] | Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B. L.; Arenholz, E. 2010: Optimizing Cr (VI) and Tc (VII) remediation through nanoscale biomineral engineering Environ Sci Technol 44(7):2577–2584. |
[62] | Li, X. Q.; Zhang, W. X. 2006: Iron nanoparticles: the core-shell structure and unique properties for Ni (II) sequestration. Langmuir 22(10): 4638-4642. |
[63] | Mahdavian, A. R.; Mirrahimi, M. A. S. 2010: Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J 159(1):264–271. |
[64] | Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. 2014: Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). App Nanosci. 4 (5):571–576. |
[65] | Jayshree Annamalai and Thangaraju Nallamuthu 2016: Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency, Appl. Nanosci., 6:259–265. |
[66] | Karthikeyan, P.; Mohan, D.; Abishek, G. and Priya, R. 2015: Synthesis of silver nanoparticles using Phytoplankton and its characteristics, International Journal of Fisheries and Aquatic Studies. 2(6): 398-401. |
[67] | Mahdieh, M., Zolanvari, A., Azimeea, A. S. Mahdieh, M. 2012: Green biosynthesis of silver nanoparticles by Spirulina platensis, Scientia Iranica, 19 (3), 926–929. |
[68] | Mubarak Ali, D.; Sasikala, M.; Gunasekaran, M. and Thajuddin, N. 2011: Biosynthesis and characterization of Sliver Nanoparticles using marine cyanobacterium, Oscillatoria willel NTDM01. Digest Journal of Nanomaterials and Biostructures. 6, (2): 385-390. |
[69] | Aishwarye Sharma, Shruti Sharma, Kuldeep Sharma, Siva P. K., Chetri, Amit Vashishtha, Pushpa Singh, Ravindra Kumar, Brijesh Rathi and Veena Agrawal, 2016: Algae as crucial organisms in advancing nanotechnology a systematic review; J Appl. Phycol. 28:1759–1774. |
[70] | Merin, D. D.; Prakash, S.; Bhimba, B. V. 2010: Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med 3:797–799. |
[71] | Mohseniazar, M.; Barin, M.; Zarredar, H.; Alizadeh, S.; Shanehbandi, D. 2011: Potential of microalgae and Lactobacilli in biosynthesis of silver nanoparticles. BioImpacts 1:149–152 |
[72] | Elumalai, S.; Santhose, B. I.; Devika, R.; Revathy, S. 2013: Collection, isolation, identification, and biosynthesis of silver nanoparticles using microalga Chlorella pyrenoidosa. Nanomechanics Sci Technol Int J 4:59–66. |
[73] | Barwal, I.; Ranjan, P.; Kateriya, S.; Yadav, S. C. 2011: Cellular proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles oxido-reductive. J Nanobiotechnol 9:1–12. |
[74] | Jena, J.; Pradhan, N.; Dash, B. P.; Sukla, L. B.; Panda, P. K. 2013: Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Bios 3:1–8. |
[75] | Jayshree Annamalai and Thangaraju Nallamuthu, 2015: Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties, Appl. Nanosci., 5:603–607. |
[76] | Mohandass, C.; Vijayaraj, A. S.; Rajasabapathy, R.; Satheeshbabu, S.; Rao, S. V.; Shiva, C. and De-mello, L.; 2013: Biosynthesis of Silver Nanoparticles from Marine Seaweed Sargassum cinereum and their Antibacterial Activity, Indian J Pharm Sci.;75(5):606-610. |
[77] | Sahayaraj, K.; Rajesh, S.; and Rathi, J. M. 2012: silver nanoparticles biosynthesis using marine alga Padina pavonica (LINN.) and its microbial activity, Journal of Nanomaterials and Biostructures, 7(4): 1557-1567. |
[78] | Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N. and Balasubramanian, T. 2014: Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens, Appl Nanosci. DOI 10.1007/s13204-014-0341-2. |
[79] | Sangeetha, N., Saravanan, K. 2014: Biogenic Silver Nanoparticles using Marine Seaweed (Ulva lactuca) and Evaluation of its Antibacterial activity, Journal of nanoscience and nanotechnology. 2 (1): 99-102. |
[80] | Kannan, R. R. R.; Stirk, W. A.; Staden, J. V. 2013: Synthesis of silver nanoparticles using the seaweed Codium capitatum P. C. Silva (Chlorophyceae). S Afr J Sci Bot 86:1–4. |
[81] | Dhanalakshmi, P. K.; Azeez, R.; Rekha, R.; Poonkodi, S.; Nallamuthu, T. 2012: Synthesis of silver nanoparticles using green and brown seaweeds. Phykos 42:39–45. |
[82] | Sahayaraj, K.; Rajesh, S.; Rathi, J. M. 2012: Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity. Dig J Nanomater Biostruct 7:1557–1567. |
[83] | Sangeetha, N.; Manikandan, S.; Singh, M. Kumaraguru, A. K. 2012: Biosynthesis and characterization of silver nanoparticles using freshly extracted sodium alginate from the seaweed Padina tetrastromatica of Gulf of Mannar, India. Curr Nanosci 8: 697–702. |
[84] | Shiny PJ, Mukherjee A, Chandrasekaran N (2013) Marine algaemediated synthesis of the silver nanoparticles and its antibacterial efficiency. Int J Pharm Sci 5:239–241. |
[85] | Marimuthu, V.; Palanisamy, S. K.; Sesurajan, S.; Sellappa, S. 2011: Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3:143–148. |
[86] | Shukla, M. K.; Singh, R. P.; Reddy, C. R. K.; Jha, B. 2012: Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol 107:295–300. |
[87] | Singaravelu, G.; Arockiamary, J. S.; Ganesh Kumar, V.; Govindaraju, K. 2007: A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces 57 (97–101). |
APA Style
Mohamed A. Hassaan, Shimaa Hosny. (2018). Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae - Review. International Journal of Atmospheric and Oceanic Sciences, 2(1), 10-22. https://doi.org/10.11648/j.ijaos.20180201.12
ACS Style
Mohamed A. Hassaan; Shimaa Hosny. Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae - Review. Int. J. Atmos. Oceanic Sci. 2018, 2(1), 10-22. doi: 10.11648/j.ijaos.20180201.12
AMA Style
Mohamed A. Hassaan, Shimaa Hosny. Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae - Review. Int J Atmos Oceanic Sci. 2018;2(1):10-22. doi: 10.11648/j.ijaos.20180201.12
@article{10.11648/j.ijaos.20180201.12, author = {Mohamed A. Hassaan and Shimaa Hosny}, title = {Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae - Review}, journal = {International Journal of Atmospheric and Oceanic Sciences}, volume = {2}, number = {1}, pages = {10-22}, doi = {10.11648/j.ijaos.20180201.12}, url = {https://doi.org/10.11648/j.ijaos.20180201.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijaos.20180201.12}, abstract = {The production of nanostructures, nanocomposites and modified nanostructures for water remediation will increase because of the need for producing clean water in fast and low energy consumption ways. Nanoparticles are widely used various fields such as electronics, cosmetics, water purification, biomedical, and biotechnology. Nanoparticles can be synthesized by physical methods, chemical and biological methods. Biosynthesis of nanoparticles using biological agents have gained much attention in the area of nanotechnology in last few decades because of cost effective, nontoxic, and ecofriendly. Algae have been used to reduce metal ions and subsequently for the biosynthesis of nanoparticles. The present review is devoted to the possibility of metal nanoparticle synthesis using alga extract. The important advantages of these biological systems are an ecofriendly, economical, high-yielding, expeditious and energy-efficient method. This review is mainly focused on recent progress on the utilization of algae of various classes, for the synthesis of Silver and Gold nanoparticles, their characterization and possible mechanisms.}, year = {2018} }
TY - JOUR T1 - Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae - Review AU - Mohamed A. Hassaan AU - Shimaa Hosny Y1 - 2018/05/24 PY - 2018 N1 - https://doi.org/10.11648/j.ijaos.20180201.12 DO - 10.11648/j.ijaos.20180201.12 T2 - International Journal of Atmospheric and Oceanic Sciences JF - International Journal of Atmospheric and Oceanic Sciences JO - International Journal of Atmospheric and Oceanic Sciences SP - 10 EP - 22 PB - Science Publishing Group SN - 2640-1150 UR - https://doi.org/10.11648/j.ijaos.20180201.12 AB - The production of nanostructures, nanocomposites and modified nanostructures for water remediation will increase because of the need for producing clean water in fast and low energy consumption ways. Nanoparticles are widely used various fields such as electronics, cosmetics, water purification, biomedical, and biotechnology. Nanoparticles can be synthesized by physical methods, chemical and biological methods. Biosynthesis of nanoparticles using biological agents have gained much attention in the area of nanotechnology in last few decades because of cost effective, nontoxic, and ecofriendly. Algae have been used to reduce metal ions and subsequently for the biosynthesis of nanoparticles. The present review is devoted to the possibility of metal nanoparticle synthesis using alga extract. The important advantages of these biological systems are an ecofriendly, economical, high-yielding, expeditious and energy-efficient method. This review is mainly focused on recent progress on the utilization of algae of various classes, for the synthesis of Silver and Gold nanoparticles, their characterization and possible mechanisms. VL - 2 IS - 1 ER -