Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods
Ricardo Gobato,
Alireza Heidari
Issue:
Volume 2, Issue 1, June 2018
Pages:
1-9
Received:
9 April 2018
Accepted:
3 May 2018
Published:
21 May 2018
Abstract: Alkaloids occupy an important position in chemistry and pharmacology. Among the various alkaloids, berberine and coralyne of the protoberberine group, sanguinarine of the benzophenanthridine group, and aristololactam-b -d-glucoside of the aristolochia group have potential to form molecular complexes with nucleic acid structures and have attracted recent attention for their prospective clinical and pharmacological utility. Sanguinarine is an alkaloid studied in the treatment of cancer cell proliferation. Found in several plants, is used in traditional medicine from several countries with Mexico and India in the natural treatment of wounds, conjunctivitis and as hallucinogen. Is a toxic quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy (Argemone mexicana Linn) Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Due to the diverse properties of this alkaloid, via computational methods was made using quantum chemistry to try to clarify some molecular properties that characterize its main sites of action as a drug. A study was made on a molecular structure of the sanguinarine, by Molecular Mechanics, PM3, Hartree-Fock, Density Functional Theory and Møller-Plesset. For calculations a cluster of six computers was used with Prescott-256 Celeron© D processors. The first principles calculations have been performed to study the equilibrium configuration of Sanguinarine molecule. Several physical properties have been calculated, including formation enthalpies, entropies, dipole moments, and the infrared emission/absorption spectrum. The results showed that the main site of molecular interaction was determined to be the hydrogen atoms. This has a strong antioxidant potential in its structure. It probably interacts with free radicals reducing their carcinogenic effect on cells. A study of the infrared spectrum complemented the paper. Absorption peaks in the infrared spectrum at 1000 cm-1, for calculation MP2/6-31G and, 1240 and 1450 cm-1 for B3LYP/6-311G ** were obtained. The MP2 and B3LYP methods showed good results for the infrared absorption spectrum. Although the base used in the MP2 method is less accurate, compared to the B3LYP whose base xxx has more accurate and broader functionalities, they are approximately equal for frequency peaks located in the 1060.6 cm-1 and 991.1 cm-1 range.
Abstract: Alkaloids occupy an important position in chemistry and pharmacology. Among the various alkaloids, berberine and coralyne of the protoberberine group, sanguinarine of the benzophenanthridine group, and aristololactam-b -d-glucoside of the aristolochia group have potential to form molecular complexes with nucleic acid structures and have attracted r...
Show More
Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae - Review
Mohamed A. Hassaan,
Shimaa Hosny
Issue:
Volume 2, Issue 1, June 2018
Pages:
10-22
Received:
23 April 2018
Accepted:
14 May 2018
Published:
24 May 2018
Abstract: The production of nanostructures, nanocomposites and modified nanostructures for water remediation will increase because of the need for producing clean water in fast and low energy consumption ways. Nanoparticles are widely used various fields such as electronics, cosmetics, water purification, biomedical, and biotechnology. Nanoparticles can be synthesized by physical methods, chemical and biological methods. Biosynthesis of nanoparticles using biological agents have gained much attention in the area of nanotechnology in last few decades because of cost effective, nontoxic, and ecofriendly. Algae have been used to reduce metal ions and subsequently for the biosynthesis of nanoparticles. The present review is devoted to the possibility of metal nanoparticle synthesis using alga extract. The important advantages of these biological systems are an ecofriendly, economical, high-yielding, expeditious and energy-efficient method. This review is mainly focused on recent progress on the utilization of algae of various classes, for the synthesis of Silver and Gold nanoparticles, their characterization and possible mechanisms.
Abstract: The production of nanostructures, nanocomposites and modified nanostructures for water remediation will increase because of the need for producing clean water in fast and low energy consumption ways. Nanoparticles are widely used various fields such as electronics, cosmetics, water purification, biomedical, and biotechnology. Nanoparticles can be s...
Show More