Abstract: In this paper we use the inverse modelling technique, first applied to the atmosphere of the planet Venus, to demonstrate that the process of convective atmospheric mass motion can be invoked to explain the greenhouse effect of the Earth’s climate. We propose that the atmospheric cell is the fundamental element of climate, and have developed an alternative climate model based on this process of atmospheric circulation for a hypothetical tidally locked world. The concept of climate derives from studies by the Greek philosopher Aristotle, who identified the three main climatic zones known to the ancient world; the equatorial torrid zone, the polar frigid zone and in between the favoured temperate zone of the Mediterranean world. Aristotle’s three climatic zones can be directly linked to the three main atmospheric circulation cells that we now recognise within the Earth’s atmosphere. These three cells are the Hadley cell, the Polar cell and the Ferrel cell. Based on the clear association between the traditional Greek concept of climate and the modern meteorological concept of atmospheric circulation cells, we propose that climate be defined as the presence and action of a particular circulation cell type within a given planetary latitudinal zone. We discuss how with knowledge of three simple meteorological parameters of tropopause elevation, tropopause temperature and lapse rate for each atmospheric cell, combined with the measurement of the area of that cell, the average global surface temperature can be calculated. By means of a mathematical model, the Dynamic-Atmosphere Energy-Transport (DAET) climate model we apply an individual climate analysis to each of the three atmospheric cells, and next generate a parallel composite model of the Earth’s planetary climate using these data. We apply the concepts and techniques of the adiabatic version of the DAET climate model, and show how this model can be compared with the published NASA image of the Earth’s outgoing long-wave radiation recorded by the CERES (Clouds and the Earth’s Radiant Energy System) Instrument onboard the NASA Aqua Satellite. Our analysis of the CERES image suggests that the Tibetan plateau forms a permanent geological thermal radiant leak point in the Earth’s atmosphere. We also compare the observed temperature found at the maximum elevation of the Antarctic ice cap with the freezing point of super-cooled water, and suggest that there is therefore a temperature controlled and latent heat related upper limit to the vertical development of a continental icecap.Abstract: In this paper we use the inverse modelling technique, first applied to the atmosphere of the planet Venus, to demonstrate that the process of convective atmospheric mass motion can be invoked to explain the greenhouse effect of the Earth’s climate. We propose that the atmospheric cell is the fundamental element of climate, and have developed an alt...Show More
Abstract: In this paper we quantify and attribute by inspection the constituent elements of the power intensity radiant flux transmission for the atmosphere of the Earth, as recorded in the following two published sources; Oklahoma Climatological Survey and Kiehl and Trenberth. The purpose of our analysis is to establish the common elements of the approach used in the formulation of these works, and to conduct an assessment of the two approaches by establishing a common format for their comparison. By applying the standard analysis of a geometric infinite series feed-back loop to an equipartition (half up and half down) diabatic distribution used for the atmospheric radiant flux to all elements of the climate model; our analysis establishes the relative roles of radiant and mass-motion carried energy fluxes that are implicitly used by the authors in their respective analyses. Having established the key controls on energy flux within each model, we then conduct for the canonical model a series of “what-if” scenarios to establish the limits of temperature rise that can be achieved for specific variations in the controls used to calculate the global average temperature. Our analysis establishes that, for the current insolation and Bond albedo, the maximum temperature that can be achieved for a thermally radiant opaque atmosphere is a rise to 29°C. This global average temperature is achieved by a total blocking of the surface-to-space atmospheric window. In order to raise the global average atmospheric temperature to the expected value of 36°C for a putative Cretaceous hothouse world, it is therefore necessary to reduce the planetary Bond albedo. The lack of continental icecaps, and the presence of flooded continental shelves with epeiric seas in a global eustatic high stand sea level, is invoked as an explanation to support the modelling concept of a reduced global Bond albedo during the Cretaceous period. The geological evidence for this supposition is mentioned with reference to published sources.Abstract: In this paper we quantify and attribute by inspection the constituent elements of the power intensity radiant flux transmission for the atmosphere of the Earth, as recorded in the following two published sources; Oklahoma Climatological Survey and Kiehl and Trenberth. The purpose of our analysis is to establish the common elements of the approach u...Show More