| Peer-Reviewed

Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal

Received: 29 August 2019     Accepted: 2 September 2019     Published: 9 June 2020
Views:       Downloads:
Abstract

The Na2[Ru(NO)Cl3 (df)] (I) and cis-[Ru(NO)(df)(cyclen)]Cl2 (II) complexes (df=diflunisal (5-(2,4-difluorophenyl)-2-hydroxybenzoic acid, cyclen=1, 4, 7, 10-tetraazacyclododecane) have been synthesized and characterized by elemental analysis, electronic (UV-Vis) and vibrational (FTIR) spectroscopic techniques. FTIR data suggests different modes of coordination of the ligand diflunisal in these complexes, i.e., coordinated in the bidentate form in the compound I and in the monodentate form in the compound II, and that df is coordinated to ruthenium by carboxylate group in a monodentate mode for both complexes. The FTIR spectra also display v(NO) at 1880 cm-1 and 1892 cm-1 for I and II, respectively, indicating a nitrosonium (NO+) character. Electronic spectra suggest that df is coordinated to the metal center in both complexes in catecholate form. Detailed electrochemical studies showed that complexes I and II display {RuNO}6/7 process at -420 mV and at -400 mV (vs. Ag/AgCl) respectively, and df ligand is oxidized at 1120 mV and at 770 mV, respectively. Controlled potential electrolysis at -750 mV or chemical reduction with Zn(Hg) amalgam results in NO release from both complexes.

Published in Journal of Chemical, Environmental and Biological Engineering (Volume 4, Issue 2)
DOI 10.11648/j.jcebe.20200402.12
Page(s) 39-46
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Nitrosyl Ruthenium Complex, Nitric Oxide, Diflunisal

References
[1] L. J. Ignarro, Academic Press, Los Angeles, 2000.
[2] M. J. Rose, P. K. Mascharak, Coord. Chem. Rev. 252 (2008) 2093-2114.
[3] D. A. Wink, J. B. Mitchell, Free Radical Biology and Medicine. 25 (1998) 434-456.
[4] P. L. Feldman, O. W. Griffith, C&N. 20 (1993) 26-33.
[5] R. M. Clancy, S. B. Abramson, Proc Soc Exp Biol Med. 210, 2 (1995) 93-101.
[6] E. Tfouni, D. R. Truzzi, A. Tavares, A. J. Gomes, L. E. Figueiredo, D. W. Franco, Nitric Oxide 26 (2012) 38-53.
[7] F. G. Marcondes, A. A. Ferro, A. Souza-torsoni, M. Sumitani, M. J. Clarck, D. W. Franco, E. Franco, M. H. Krieger, Life Sciences 70 (2002) 2735-2752.
[8] G. B. Ritcher-Addo, P. Legzdins, Oxford University Press, 1992.
[9] K. Q. Ferreira, F. G. Santos, Z. N. Rocha, T. Guaratini, R. S. Silva, E. Tfouni, Inorg. Chem. Comm. 7 (2004) 204-208.
[10] E. Tfouni, K. Q. Ferreira, F. G. Doro, R. S. Silva, Z. N. Rocha, Coord. Chem. Rev. 249 (2005) 405-418.
[11] F. S. Oliveira, V. Togniolo, T. Pupo, A. C. Tedesco; R. S. Silva, Inorg. Chem. Comm. 7 (2004) 160-164.
[12] F. G. Doro, K. Q. Ferreira, Z. N. da Rocha, G. F. Caramori, A. J. Gomes, E. Tfouni. Coord. Chem. Rev. 306 (2016) 652-677.
[13] D. Bonaventura, C. N. Lunardi, G. J. Rodrigues, M. A. Neto, J. A. Vercesi, R. G. De Lima, R. S. Da Silva, L. M. Bendhack, J. Inorg. Biochem. 103 (2009) 1366-1374.
[14] R. G. Lima, M. G. Sauaia, D. Bonaventura, A. C. Tedesco, L. M. Bendhack. R. S. Da Silva, Inorg. Chim. Acta 359 (2006) 2543-2549.
[15] C. S. Freitas, A. C. Roveda, Jr., D. R. Truzzi, A. C. Garcia, T. M. Cunha, F. Q. Cunha, D. W. Franco, J. Med. Chem. 11, 58 (2015) 4439-4448.
[16] C. L. Kummer, T. C. Coelho, Rev. Bras. Anestesiol. 52 (2002) 498-512.
[17] F. Sayin, S. Kir, J. Pharm. Biomed. Anal. 25, 1 (2001) 153-163.
[18] S. Fountoulaki, F. Perdih, I. Turel, D. P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 105, 12 (2011) 1645-1655.
[19] P. C. Andrews, R. L. Ferrero, P. C. Junk, I. Humar, Q. Luu, K. Nguyen, J. W. Taylor, J. Chem. Soc., Dalton Trans. 39 (2010) 2861-2868.
[20] A. Tarushi, C. Kakoulidou, C. P. Raptopoulou, V. Psycharis, D. P. Kessissoglou, I. Zoi, A. N. Papapoulos, G. Psomas, J. Inorg. Biochem. 170 (2017) 85-97.
[21] F. G. Doro, E. E. Castellano, L. A. B. Moraes, M. N. Eberlin, E. Tfouni, Inorg. Chem. 47, 10 (2008) 4118-4125.
[22] V. A. Emel’yanov, I. A. Baidina, S. A. Gromilov, J. Sctruc. Chem. 53, 2 (2012) 341-346.
[23] K. Q. Ferreira, L. N. Cardoso, S. Nikolaou, Z. N. Rocha, R. S. Silva, E. Tfouni, Inorg. Chem. 44 (2005) 5544-5546.
[24] K. Q. Ferreira, A. M. Lucchesi, Z. N. Rocha, R. S. Silva, Inorg. Chim. Acta. 328 (2002) 147-151.
[25] C. M. Che, C. K. Poon, Pure and Applied Chemistry 60 (1998) 495-500.
[26] D. D. Walker, H. Taube, Inorg. Chem. 20 (1981) 2828-2834.
[27] F. D. Oliveira, K. Q. Ferreira, D. Bonaventura, L. M. Bendhack, A. C. Tedesco, S. D. Machado, E. Tfouni, R. S. Silva, J. Inorg. Biochem. 101, 320 (2007) 313-320.
[28] I. P. Evans, A. Spenar, G. J. Wilkinson, J. Chem. Soc., Dalton Trans. (1973) 204.
[29] E. Tfouni, D. W. Franco, B. R. McGarvey, M. Krieger, Coord. Chem. Rev. 236, (2003) 57-69.
[30] L. A. Berben, M. C. Faia, N. R. M. Crawford, J. R. Long, Inorg. Chem. 45 (2006) 6378-6386.
[31] F. Roncaroli, M. E. Ruggiero, D. W. Franco, G. L. Estiu, J. A. Olabe, Inorg. Chem. 41 (2002) 5760-5769.
[32] G. Bandoli, A. Dolmella, T. I. A. Gerber, J. G. H. Du Preez, Inorg. Chim. Acta 294 (1999) 114-118.
[33] A. Trinchero, S. Bonora, A. Tinti, G. Fini, Biopolymers, 74 (2004) 120-124.
[34] G. B. Deacon, R. J. Phillips. Coord. Chem. Rev. 33 (1980) 227-250.
[35] J. H. Enemark, R. D. Felthmam, Coord. Chem. Rev. 13 (1974) 339-406.
[36] P. C. Ford, I. M. Lorkovic, Chem. Rev. 102 (2002) 993-1017.
[37] C. G. Pierpont, R. M. Buchanan, Coord. Chem. Rev. 38 (1981) 45-87.
[38] D. Nematollahi, A. Amani, Chem. Pharm. Bull. 56 (2008) 513-517.
[39] R. A. Metcalfe, A. B. P. Lever, Inorg. Chem. 36 (1997) 4762-4771.
[40] V. Poelhsitz, D. Sc. Thesis, Centro de Ciências Exatas e de Tecnologia, UFSCar, 2005.
[41] J. C. Toledo, L. G. F. Lopes, A. A. Alves, L. P. Silva, D. W. Franco, J. Inorg. Biochem. 89 (2002) 267–271.
[42] P. G. Zanichelli, H. F. G. Estrela, R. C. Spadari-Bratfisch, D. M. Grassi-Kassisse, D. W. Franco, Nitric Oxide, 16 (2007) 189-196.
[43] F. O. N. Silva, S. X. B. Araújo, A. K. M. Holanda, E. Meyer, F. A. M. Sales, I. C. N. Diógenes, I. M. M. Carvalho, I. S. Moreira, L. G. F. Lopes, Eur. J. Inorg. Chem. 10 (2006) 2020-2026.
[44] L. G. F. Lopes, A. Wieraszko, Y. El-Sherif, M. J. Clarke, Inorg. Chim. Acta, 312 (2001) 15-22.
[45] K. Q. Ferreira, E. Tfouni, J. Braz. Chem. Soc. 21 (2010) 1349-1358.
[46] R. S. Silva, S. I. Gorelsky, E. S. Dodsworth, E. Tfouni, A. B. P. Lever, Dalton Trans. 22 (2000) 4078-4088.
Cite This Article
  • APA Style

    Ernani Lacerda de Oliveira Neto, Juliana Guerreiro Cezar, Fabio Gorzoni Doro, Jose Roque Mota Carvalho, Kleber Queiroz Ferreira. (2020). Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal. Journal of Chemical, Environmental and Biological Engineering, 4(2), 39-46. https://doi.org/10.11648/j.jcebe.20200402.12

    Copy | Download

    ACS Style

    Ernani Lacerda de Oliveira Neto; Juliana Guerreiro Cezar; Fabio Gorzoni Doro; Jose Roque Mota Carvalho; Kleber Queiroz Ferreira. Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal. J. Chem. Environ. Biol. Eng. 2020, 4(2), 39-46. doi: 10.11648/j.jcebe.20200402.12

    Copy | Download

    AMA Style

    Ernani Lacerda de Oliveira Neto, Juliana Guerreiro Cezar, Fabio Gorzoni Doro, Jose Roque Mota Carvalho, Kleber Queiroz Ferreira. Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal. J Chem Environ Biol Eng. 2020;4(2):39-46. doi: 10.11648/j.jcebe.20200402.12

    Copy | Download

  • @article{10.11648/j.jcebe.20200402.12,
      author = {Ernani Lacerda de Oliveira Neto and Juliana Guerreiro Cezar and Fabio Gorzoni Doro and Jose Roque Mota Carvalho and Kleber Queiroz Ferreira},
      title = {Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal},
      journal = {Journal of Chemical, Environmental and Biological Engineering},
      volume = {4},
      number = {2},
      pages = {39-46},
      doi = {10.11648/j.jcebe.20200402.12},
      url = {https://doi.org/10.11648/j.jcebe.20200402.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jcebe.20200402.12},
      abstract = {The Na2[Ru(NO)Cl3 (df)] (I) and cis-[Ru(NO)(df)(cyclen)]Cl2 (II) complexes (df=diflunisal (5-(2,4-difluorophenyl)-2-hydroxybenzoic acid, cyclen=1, 4, 7, 10-tetraazacyclododecane) have been synthesized and characterized by elemental analysis, electronic (UV-Vis) and vibrational (FTIR) spectroscopic techniques. FTIR data suggests different modes of coordination of the ligand diflunisal in these complexes, i.e., coordinated in the bidentate form in the compound I and in the monodentate form in the compound II, and that df is coordinated to ruthenium by carboxylate group in a monodentate mode for both complexes. The FTIR spectra also display v(NO) at 1880 cm-1 and 1892 cm-1 for I and II, respectively, indicating a nitrosonium (NO+) character. Electronic spectra suggest that df is coordinated to the metal center in both complexes in catecholate form. Detailed electrochemical studies showed that complexes I and II display {RuNO}6/7 process at -420 mV and at -400 mV (vs. Ag/AgCl) respectively, and df ligand is oxidized at 1120 mV and at 770 mV, respectively. Controlled potential electrolysis at -750 mV or chemical reduction with Zn(Hg) amalgam results in NO release from both complexes.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal
    AU  - Ernani Lacerda de Oliveira Neto
    AU  - Juliana Guerreiro Cezar
    AU  - Fabio Gorzoni Doro
    AU  - Jose Roque Mota Carvalho
    AU  - Kleber Queiroz Ferreira
    Y1  - 2020/06/09
    PY  - 2020
    N1  - https://doi.org/10.11648/j.jcebe.20200402.12
    DO  - 10.11648/j.jcebe.20200402.12
    T2  - Journal of Chemical, Environmental and Biological Engineering
    JF  - Journal of Chemical, Environmental and Biological Engineering
    JO  - Journal of Chemical, Environmental and Biological Engineering
    SP  - 39
    EP  - 46
    PB  - Science Publishing Group
    SN  - 2640-267X
    UR  - https://doi.org/10.11648/j.jcebe.20200402.12
    AB  - The Na2[Ru(NO)Cl3 (df)] (I) and cis-[Ru(NO)(df)(cyclen)]Cl2 (II) complexes (df=diflunisal (5-(2,4-difluorophenyl)-2-hydroxybenzoic acid, cyclen=1, 4, 7, 10-tetraazacyclododecane) have been synthesized and characterized by elemental analysis, electronic (UV-Vis) and vibrational (FTIR) spectroscopic techniques. FTIR data suggests different modes of coordination of the ligand diflunisal in these complexes, i.e., coordinated in the bidentate form in the compound I and in the monodentate form in the compound II, and that df is coordinated to ruthenium by carboxylate group in a monodentate mode for both complexes. The FTIR spectra also display v(NO) at 1880 cm-1 and 1892 cm-1 for I and II, respectively, indicating a nitrosonium (NO+) character. Electronic spectra suggest that df is coordinated to the metal center in both complexes in catecholate form. Detailed electrochemical studies showed that complexes I and II display {RuNO}6/7 process at -420 mV and at -400 mV (vs. Ag/AgCl) respectively, and df ligand is oxidized at 1120 mV and at 770 mV, respectively. Controlled potential electrolysis at -750 mV or chemical reduction with Zn(Hg) amalgam results in NO release from both complexes.
    VL  - 4
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Exact and Natural Sciences, State University of Southwest Bahia, Itapetinga, Brazil

  • Department of General and Inorganic Chemistry, Federal University of Bahia, Salvador, Brazil

  • Department of Chemistry, Federal University of Mining Triangle, Iturama, Brazil

  • Department of General and Inorganic Chemistry, Federal University of Bahia, Salvador, Brazil

  • Department of General and Inorganic Chemistry, Federal University of Bahia, Salvador, Brazil

  • Sections