The Na2[Ru(NO)Cl3 (df)] (I) and cis-[Ru(NO)(df)(cyclen)]Cl2 (II) complexes (df=diflunisal (5-(2,4-difluorophenyl)-2-hydroxybenzoic acid, cyclen=1, 4, 7, 10-tetraazacyclododecane) have been synthesized and characterized by elemental analysis, electronic (UV-Vis) and vibrational (FTIR) spectroscopic techniques. FTIR data suggests different modes of coordination of the ligand diflunisal in these complexes, i.e., coordinated in the bidentate form in the compound I and in the monodentate form in the compound II, and that df is coordinated to ruthenium by carboxylate group in a monodentate mode for both complexes. The FTIR spectra also display v(NO) at 1880 cm-1 and 1892 cm-1 for I and II, respectively, indicating a nitrosonium (NO+) character. Electronic spectra suggest that df is coordinated to the metal center in both complexes in catecholate form. Detailed electrochemical studies showed that complexes I and II display {RuNO}6/7 process at -420 mV and at -400 mV (vs. Ag/AgCl) respectively, and df ligand is oxidized at 1120 mV and at 770 mV, respectively. Controlled potential electrolysis at -750 mV or chemical reduction with Zn(Hg) amalgam results in NO release from both complexes.
Published in | Journal of Chemical, Environmental and Biological Engineering (Volume 4, Issue 2) |
DOI | 10.11648/j.jcebe.20200402.12 |
Page(s) | 39-46 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2020. Published by Science Publishing Group |
Nitrosyl Ruthenium Complex, Nitric Oxide, Diflunisal
[1] | L. J. Ignarro, Academic Press, Los Angeles, 2000. |
[2] | M. J. Rose, P. K. Mascharak, Coord. Chem. Rev. 252 (2008) 2093-2114. |
[3] | D. A. Wink, J. B. Mitchell, Free Radical Biology and Medicine. 25 (1998) 434-456. |
[4] | P. L. Feldman, O. W. Griffith, C&N. 20 (1993) 26-33. |
[5] | R. M. Clancy, S. B. Abramson, Proc Soc Exp Biol Med. 210, 2 (1995) 93-101. |
[6] | E. Tfouni, D. R. Truzzi, A. Tavares, A. J. Gomes, L. E. Figueiredo, D. W. Franco, Nitric Oxide 26 (2012) 38-53. |
[7] | F. G. Marcondes, A. A. Ferro, A. Souza-torsoni, M. Sumitani, M. J. Clarck, D. W. Franco, E. Franco, M. H. Krieger, Life Sciences 70 (2002) 2735-2752. |
[8] | G. B. Ritcher-Addo, P. Legzdins, Oxford University Press, 1992. |
[9] | K. Q. Ferreira, F. G. Santos, Z. N. Rocha, T. Guaratini, R. S. Silva, E. Tfouni, Inorg. Chem. Comm. 7 (2004) 204-208. |
[10] | E. Tfouni, K. Q. Ferreira, F. G. Doro, R. S. Silva, Z. N. Rocha, Coord. Chem. Rev. 249 (2005) 405-418. |
[11] | F. S. Oliveira, V. Togniolo, T. Pupo, A. C. Tedesco; R. S. Silva, Inorg. Chem. Comm. 7 (2004) 160-164. |
[12] | F. G. Doro, K. Q. Ferreira, Z. N. da Rocha, G. F. Caramori, A. J. Gomes, E. Tfouni. Coord. Chem. Rev. 306 (2016) 652-677. |
[13] | D. Bonaventura, C. N. Lunardi, G. J. Rodrigues, M. A. Neto, J. A. Vercesi, R. G. De Lima, R. S. Da Silva, L. M. Bendhack, J. Inorg. Biochem. 103 (2009) 1366-1374. |
[14] | R. G. Lima, M. G. Sauaia, D. Bonaventura, A. C. Tedesco, L. M. Bendhack. R. S. Da Silva, Inorg. Chim. Acta 359 (2006) 2543-2549. |
[15] | C. S. Freitas, A. C. Roveda, Jr., D. R. Truzzi, A. C. Garcia, T. M. Cunha, F. Q. Cunha, D. W. Franco, J. Med. Chem. 11, 58 (2015) 4439-4448. |
[16] | C. L. Kummer, T. C. Coelho, Rev. Bras. Anestesiol. 52 (2002) 498-512. |
[17] | F. Sayin, S. Kir, J. Pharm. Biomed. Anal. 25, 1 (2001) 153-163. |
[18] | S. Fountoulaki, F. Perdih, I. Turel, D. P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 105, 12 (2011) 1645-1655. |
[19] | P. C. Andrews, R. L. Ferrero, P. C. Junk, I. Humar, Q. Luu, K. Nguyen, J. W. Taylor, J. Chem. Soc., Dalton Trans. 39 (2010) 2861-2868. |
[20] | A. Tarushi, C. Kakoulidou, C. P. Raptopoulou, V. Psycharis, D. P. Kessissoglou, I. Zoi, A. N. Papapoulos, G. Psomas, J. Inorg. Biochem. 170 (2017) 85-97. |
[21] | F. G. Doro, E. E. Castellano, L. A. B. Moraes, M. N. Eberlin, E. Tfouni, Inorg. Chem. 47, 10 (2008) 4118-4125. |
[22] | V. A. Emel’yanov, I. A. Baidina, S. A. Gromilov, J. Sctruc. Chem. 53, 2 (2012) 341-346. |
[23] | K. Q. Ferreira, L. N. Cardoso, S. Nikolaou, Z. N. Rocha, R. S. Silva, E. Tfouni, Inorg. Chem. 44 (2005) 5544-5546. |
[24] | K. Q. Ferreira, A. M. Lucchesi, Z. N. Rocha, R. S. Silva, Inorg. Chim. Acta. 328 (2002) 147-151. |
[25] | C. M. Che, C. K. Poon, Pure and Applied Chemistry 60 (1998) 495-500. |
[26] | D. D. Walker, H. Taube, Inorg. Chem. 20 (1981) 2828-2834. |
[27] | F. D. Oliveira, K. Q. Ferreira, D. Bonaventura, L. M. Bendhack, A. C. Tedesco, S. D. Machado, E. Tfouni, R. S. Silva, J. Inorg. Biochem. 101, 320 (2007) 313-320. |
[28] | I. P. Evans, A. Spenar, G. J. Wilkinson, J. Chem. Soc., Dalton Trans. (1973) 204. |
[29] | E. Tfouni, D. W. Franco, B. R. McGarvey, M. Krieger, Coord. Chem. Rev. 236, (2003) 57-69. |
[30] | L. A. Berben, M. C. Faia, N. R. M. Crawford, J. R. Long, Inorg. Chem. 45 (2006) 6378-6386. |
[31] | F. Roncaroli, M. E. Ruggiero, D. W. Franco, G. L. Estiu, J. A. Olabe, Inorg. Chem. 41 (2002) 5760-5769. |
[32] | G. Bandoli, A. Dolmella, T. I. A. Gerber, J. G. H. Du Preez, Inorg. Chim. Acta 294 (1999) 114-118. |
[33] | A. Trinchero, S. Bonora, A. Tinti, G. Fini, Biopolymers, 74 (2004) 120-124. |
[34] | G. B. Deacon, R. J. Phillips. Coord. Chem. Rev. 33 (1980) 227-250. |
[35] | J. H. Enemark, R. D. Felthmam, Coord. Chem. Rev. 13 (1974) 339-406. |
[36] | P. C. Ford, I. M. Lorkovic, Chem. Rev. 102 (2002) 993-1017. |
[37] | C. G. Pierpont, R. M. Buchanan, Coord. Chem. Rev. 38 (1981) 45-87. |
[38] | D. Nematollahi, A. Amani, Chem. Pharm. Bull. 56 (2008) 513-517. |
[39] | R. A. Metcalfe, A. B. P. Lever, Inorg. Chem. 36 (1997) 4762-4771. |
[40] | V. Poelhsitz, D. Sc. Thesis, Centro de Ciências Exatas e de Tecnologia, UFSCar, 2005. |
[41] | J. C. Toledo, L. G. F. Lopes, A. A. Alves, L. P. Silva, D. W. Franco, J. Inorg. Biochem. 89 (2002) 267–271. |
[42] | P. G. Zanichelli, H. F. G. Estrela, R. C. Spadari-Bratfisch, D. M. Grassi-Kassisse, D. W. Franco, Nitric Oxide, 16 (2007) 189-196. |
[43] | F. O. N. Silva, S. X. B. Araújo, A. K. M. Holanda, E. Meyer, F. A. M. Sales, I. C. N. Diógenes, I. M. M. Carvalho, I. S. Moreira, L. G. F. Lopes, Eur. J. Inorg. Chem. 10 (2006) 2020-2026. |
[44] | L. G. F. Lopes, A. Wieraszko, Y. El-Sherif, M. J. Clarke, Inorg. Chim. Acta, 312 (2001) 15-22. |
[45] | K. Q. Ferreira, E. Tfouni, J. Braz. Chem. Soc. 21 (2010) 1349-1358. |
[46] | R. S. Silva, S. I. Gorelsky, E. S. Dodsworth, E. Tfouni, A. B. P. Lever, Dalton Trans. 22 (2000) 4078-4088. |
APA Style
Ernani Lacerda de Oliveira Neto, Juliana Guerreiro Cezar, Fabio Gorzoni Doro, Jose Roque Mota Carvalho, Kleber Queiroz Ferreira. (2020). Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal. Journal of Chemical, Environmental and Biological Engineering, 4(2), 39-46. https://doi.org/10.11648/j.jcebe.20200402.12
ACS Style
Ernani Lacerda de Oliveira Neto; Juliana Guerreiro Cezar; Fabio Gorzoni Doro; Jose Roque Mota Carvalho; Kleber Queiroz Ferreira. Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal. J. Chem. Environ. Biol. Eng. 2020, 4(2), 39-46. doi: 10.11648/j.jcebe.20200402.12
AMA Style
Ernani Lacerda de Oliveira Neto, Juliana Guerreiro Cezar, Fabio Gorzoni Doro, Jose Roque Mota Carvalho, Kleber Queiroz Ferreira. Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal. J Chem Environ Biol Eng. 2020;4(2):39-46. doi: 10.11648/j.jcebe.20200402.12
@article{10.11648/j.jcebe.20200402.12, author = {Ernani Lacerda de Oliveira Neto and Juliana Guerreiro Cezar and Fabio Gorzoni Doro and Jose Roque Mota Carvalho and Kleber Queiroz Ferreira}, title = {Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal}, journal = {Journal of Chemical, Environmental and Biological Engineering}, volume = {4}, number = {2}, pages = {39-46}, doi = {10.11648/j.jcebe.20200402.12}, url = {https://doi.org/10.11648/j.jcebe.20200402.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jcebe.20200402.12}, abstract = {The Na2[Ru(NO)Cl3 (df)] (I) and cis-[Ru(NO)(df)(cyclen)]Cl2 (II) complexes (df=diflunisal (5-(2,4-difluorophenyl)-2-hydroxybenzoic acid, cyclen=1, 4, 7, 10-tetraazacyclododecane) have been synthesized and characterized by elemental analysis, electronic (UV-Vis) and vibrational (FTIR) spectroscopic techniques. FTIR data suggests different modes of coordination of the ligand diflunisal in these complexes, i.e., coordinated in the bidentate form in the compound I and in the monodentate form in the compound II, and that df is coordinated to ruthenium by carboxylate group in a monodentate mode for both complexes. The FTIR spectra also display v(NO) at 1880 cm-1 and 1892 cm-1 for I and II, respectively, indicating a nitrosonium (NO+) character. Electronic spectra suggest that df is coordinated to the metal center in both complexes in catecholate form. Detailed electrochemical studies showed that complexes I and II display {RuNO}6/7 process at -420 mV and at -400 mV (vs. Ag/AgCl) respectively, and df ligand is oxidized at 1120 mV and at 770 mV, respectively. Controlled potential electrolysis at -750 mV or chemical reduction with Zn(Hg) amalgam results in NO release from both complexes.}, year = {2020} }
TY - JOUR T1 - Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal AU - Ernani Lacerda de Oliveira Neto AU - Juliana Guerreiro Cezar AU - Fabio Gorzoni Doro AU - Jose Roque Mota Carvalho AU - Kleber Queiroz Ferreira Y1 - 2020/06/09 PY - 2020 N1 - https://doi.org/10.11648/j.jcebe.20200402.12 DO - 10.11648/j.jcebe.20200402.12 T2 - Journal of Chemical, Environmental and Biological Engineering JF - Journal of Chemical, Environmental and Biological Engineering JO - Journal of Chemical, Environmental and Biological Engineering SP - 39 EP - 46 PB - Science Publishing Group SN - 2640-267X UR - https://doi.org/10.11648/j.jcebe.20200402.12 AB - The Na2[Ru(NO)Cl3 (df)] (I) and cis-[Ru(NO)(df)(cyclen)]Cl2 (II) complexes (df=diflunisal (5-(2,4-difluorophenyl)-2-hydroxybenzoic acid, cyclen=1, 4, 7, 10-tetraazacyclododecane) have been synthesized and characterized by elemental analysis, electronic (UV-Vis) and vibrational (FTIR) spectroscopic techniques. FTIR data suggests different modes of coordination of the ligand diflunisal in these complexes, i.e., coordinated in the bidentate form in the compound I and in the monodentate form in the compound II, and that df is coordinated to ruthenium by carboxylate group in a monodentate mode for both complexes. The FTIR spectra also display v(NO) at 1880 cm-1 and 1892 cm-1 for I and II, respectively, indicating a nitrosonium (NO+) character. Electronic spectra suggest that df is coordinated to the metal center in both complexes in catecholate form. Detailed electrochemical studies showed that complexes I and II display {RuNO}6/7 process at -420 mV and at -400 mV (vs. Ag/AgCl) respectively, and df ligand is oxidized at 1120 mV and at 770 mV, respectively. Controlled potential electrolysis at -750 mV or chemical reduction with Zn(Hg) amalgam results in NO release from both complexes. VL - 4 IS - 2 ER -