Abstract: The unsteady stagnation point flow and heat transfer with prescribed flux towards a stretching and shrinking sheet with viscous dissipation is studied. Similarity transformation is adopted to initially convert the governing differential equations into nonlinear ordinary differential equations. The two-point boundary value ordinary differential equations (ODE) are subsequently converted into partial differential equations by introducing a time-marching scheme. A Crank-Nicolson Newton-Richtmeyer scheme is employed to discretize the resulting equations. Initial guesses are made for the dependent variables and the solution advanced in time until temporal variations of the scalar profile are diminished and the steady-state solutions satisfy the similarity equations. A variation of the heat flux at one of the boundaries produced noticeable variations in the temperature field that can be related to the magnitude of the Prandtl number and velocity ratio parameter.Abstract: The unsteady stagnation point flow and heat transfer with prescribed flux towards a stretching and shrinking sheet with viscous dissipation is studied. Similarity transformation is adopted to initially convert the governing differential equations into nonlinear ordinary differential equations. The two-point boundary value ordinary differential equa...Show More