Copper chemistry has great importance owing to its low cost, high functional group tolerance, high abundance, and low toxicity. In addition to natural copper-containing catalysts, significant efforts have been devoted to the development of man-made copper redox catalysts. Apart from these efforts, copper has become one of the most versatile and interesting bio-relevant metals in homogeneous catalysis. The review concentrates on various copper-catalyzed organic transformations covering areas such as heterocyclic synthesis, coupling reactions, asymmetric synthesis, click reactions, multicomponent reactions, C–H activation, trifluoromethylation reactions, and applications in the synthesis of natural products. Copper-catalyzed heterocyclic synthesis and multicomponent reactions were found to be important tools for the synthesis of many biologically active compounds. The review summarizes the developments in copper catalysis in the field of organic chemistry and discusses the future perspectives of copper catalysis for contemporary organic synthesis.
Published in | Journal of Chemical, Environmental and Biological Engineering (Volume 6, Issue 1) |
DOI | 10.11648/j.jcebe.20220601.14 |
Page(s) | 24-33 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Copper-catalyzed Reaction, Coupling Reaction, Alkyl Halides, Carbon–heteroatom Bonds
[1] | Z. Shi, C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 2012, 41, 3381. |
[2] | V. B. Phapale, D. J. Cardenas, Chem. Soc. Rev. 2009, 38, 1598; J. Yamaguchi, K. Muto, K. Itami, Eur. J. Org. Chem. 2013, 19. |
[3] | L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887; A. Alexakis, J. E. Backvall, N. Krause, O. Pamies, M. Dieguez, Chem. Rev. 2008, 108, 2796. |
[4] | F. Hebrard, P. Kalck, Chem. Rev. 2009, 109, 4272. |
[5] | A. Correa, O. G. Mancheno, C. Bolm, Chem. Soc. Rev. 2008, 37, 1108. |
[6] | A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; B. K. Min, C. M. Friend, Chem. Rev. 2007, 107, 2709; Z. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239; d) N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994. |
[7] | P. Saisaha, J. W. de Boer, W. R. Browne, Chem. Soc. Rev. 2013, 42, 2059; B. Zhou, H. Chen, C. Wang, J. Am. Chem. Soc. 2013, 135, 1264. |
[8] | K. Fagnou, M. Lautens, Chem. Rev. 2003, 103, 169; T. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829. |
[9] | G. Maas, Chem. Soc. Rev. 2004, 33, 183; S. I. Murahashi, D. Zhang, Chem. Soc. Rev. 2008, 37, 1490. |
[10] | C. Zhu, J. R. Falck, Angew. Chem. Int. Ed. 2011, 50, 6626; Y. Wei, N. Yoshikai, Org. Lett. 2011, 13, 5504. |
[11] | W.-W. Chan, S.-F. Lo, Z. Zhou, W.-Y. Yu, J. Am. Chem. Soc. 2012, 134, 13565; P. Zhao, F. Wang, K. Han, X. Li, Org. Lett. 2012, 14, 3400. |
[12] | B. Li, H. Feng, S. Xu, B. Wang, Chem. Eur. J. 2011, 17, 12573; L. Ackermann, S. I. Kozhushkov, D. S. Yufit, Chem. Eur. J. 2012, 18, 12068. |
[13] | J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359. |
[14] | B. J. Hataway, Coord. Chem. Rev., 1981, 35, 211. |
[15] | B. J. Hataway and D. E. Billing, Coord. Chem. Rev., 1970, 5, 143. |
[16] | F. Ullmann, Ber. Dtsch. Chem. Ges., 1903, 36, 2382. |
[17] | F. Ullmann, Ber. Dtsch. Chem. Ges., 1904, 37, 853. |
[18] | I. Goldberg, Ber. Dtsch. Chem. Ges., 1906, 39, 1691. |
[19] | J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire, ´Chem Rev., 2002, 102, 1359. |
[20] | I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev., 2004, 248, 2337. |
[21] | E. N Jacobsen,.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer-Verlag: Berlin, 1999. |
[22] | P. Perlmutter,. Conjugate Addition Reactions in Organic Synthesis; Pergamon; Oxford, 1992. |
[23] | B. E Rossiter,.; N. M Swingle,. Chem. Rev. 1992. |
[24] | A. H. M De Vries,.; A. Meetsma,; B. L Feringa,. Angew. Chem. Int. Ed. 1996, 35, 2374–2376. |
[25] | J. F Teichert,.; B. L Feringa,. Angew. Chem. Int. Ed. 2010, 49, 2486-2528. |
[26] | S. Afewerki,; P. Breistein,.; K. Pirttila,; L Deiana,.; P. Dziedzic,; I. Ibrahem,; A. Cordova, Chem. Eur. J. 2011, 17, 8784–8788. |
[27] | A. Alexakis,; M. Vuagnoux-d´Augustin Chem. Eur. J. 2007, 13, 9647. |
[28] | M. G Pizzuti,.; A. J Minnaard,.; B. L Feringa,. Org. Biomol. Chem. 2008, 6, 3464. |
[29] | B. L Feringa,.; R. Badorrey,; D. Pena,; S. R Harutyunyan,.; A. J Minnaard,. Proc. Natl. Acad. Sci. USA, 2004, 101, 5834–5838. |
[30] | G. P Howell,.; S. P Fletcher,.; K. Geurts,; B. ter Horst,; A. J. Minnaard,; B. L. J. Feringa Am. Chem. Soc. 2006, 128, 14977. |
[31] | Y. Jiang and D. Ma, in Copper-Mediated Cross-Coupling Reactions, ed. |
[32] | A. C. Bissember, R. J. Lundgren, S. E. Creutz, J. C. Peters and G. C. Fu, Angew. Chem., Int. Ed., 2013, 52, 5129. |
[33] | J. Lee and J. S. Panek, in Copper-Mediated Cross-Coupling Reactions, ed. G. Evano and N. Blanchard, John Wiley & Sons, Hoboken, 2013, ch. 16. |
[34] | K. C. Nicolaou, H. Li, C. N. C. Boddy, J. M. Ramanjulu, T.-Y. Yue, S. Natarajan, X.-J. Chu, S. Br ase and F. Rubsam, Chem.–Eur. J., 1999, 5, 2584. |
[35] | D. Ma, C. Xia, J. Jiang and J. Zhang, Org. Lett., 2001, 3, 2189. |
[36] | F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009, 48, 6954. |
[37] | H. P. Zhang, H. Kakeya and H. Osada, Tetrahedron Lett., 1997, 38, 1789. |
[38] | H. Kakeya, H. P. Zhang, K. Kobinata, R. Onose, C. Onozawa, T. Kudo and H. Osada, J. Antibiot., 1997, 50, 370. |
[39] | G. Evano, J. V. Schaus and J. S. Panek, Org. Lett., 2004, 6, 525. |
[40] | A. Klapars, X. Huang and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 7421. |
[41] | A. Furstner, T. Dierkes, O. R. Thiel and G. Blanda, ¨ Chem.– Eur. J., 2001, 7, 5286. |
[42] | L. Huang, H. Jiang, C. Qi, X. Liu, J. Am. Chem. Soc. 2010, 132, 17652. |
[43] | C. Wan, J. Zhang, S. Wang, J. Fan, Z. Wang, Org. Lett. 2010, 12, 2338. |
[44] | C. Jallabert, H. Riviere, Tetrahedron Lett. 14 (1977) 1215. |
[45] | W. Brackman, C. J. Gaasbeek, Recl Trav. Chim. Pays–Bas 85 (1966) 242. |
[46] | B. Betzemeier, M. Cavazzini, S. Quici, P. Knochel, Tetrahedron Lett. 41 (2000) 4343. |
[47] | G. Liu, JR Huth, ET. Olejniczak, R. Mendoza, P. De Vries, et al. 2001. |
[48] | G. De Martino, MC. Edler, G. La Regina, A. Coluccia, MC. Barbera, et al. 2006. |
[49] | A. Gangjee, Y. Zeng, T. Talreja, JJ. McGuire, RL. Kisliuk, SF. Queener 2007. |
[50] | Y. Wang, S. Chackalamannil, Z. Hu, JW. Clader, W. Greenlee, et al. 2000. |
[51] | S. F. Nielsen, E. O. Nielsen, G. M. Olsen, T. Liljefors, D. Peters 2000. |
[52] | S. W Kaldor, VJ Kalish, JF Davies 2nd, BV Shetty, JE Fritz, et al. 1997. |
[53] | J. Lindley (1984) Copper assisted nucleophilic substitution of aryl halogen. |
[54] | A. Van Bierbeek, M. Gingras (1998) Polysulfurated Branched Molecules Containing Functionalized m-Phenylene Sulfdes. |
[55] | I. P Beletskaya, V. P Ananikov (2011) Transition-metal-catalyzed. |
[56] | C. C Eichman, J. P Stambuli (2011) Transition metal catalyzed synthesis of aryl sulfdes. Molecules 16: 590-608. |
[57] | F. Y Kwong, S. L Buchwald (2002) A general, effcient, and inexpensive catalyst system for the coupling of aryl iodides and thiols. Org Lett 4: 3517-3520. |
[58] | C. Enguehard-Gueiffer, I. Thery, A. Gueiffer, S. L Buchwald 2006. |
[59] | A. K Verma, J. Singh, V. Kasi Sankar, R. Chaudhary, R. Chandra 2007. |
[60] | M. Carril, R. San Martin, E. Dom Ãnguez, I Tellitu 2007. |
[61] | A. Butler,; J. V Walker,. Chem. Rev. 1993, 93, 1937–1944. doi: 10.1021/cr00021a014. |
[62] | Z.-J Du,.; L.-X Gao,.; Y.-J Lin,.; F.-S Han,. ChemCatChem 2014, 6, 123–126. doi: 10.1002/cctc.201300734. |
[63] | F Huang,.; P Wu,.; L Wang,.; J Chen,.; C. Sun,; Yu, Z. Chem. Commun. 2014, 50, 12479–12481. doi: 10.1039/C4CC05837B. |
[64] | R Kundu,.; Z. T Ball,. Org. Lett. 2010, 12, 2460–2463. doi: 10.1021/ol100472t. |
[65] | C Battilocchio,.; J. M Hawkins,.; S. V. Ley, Org. Lett. 2014, 16, 1060. doi: 10.1021/ol403591c. |
[66] | S. Santoro,; R Liao,.-Z.; F. J Himo,. Org. Chem. 2011, 76, 9246. doi: 10.1021/jo201447e. |
[67] | V. B Oza, H. M Petrassi, H. E Purkey, J. W Kelly. Bioorg Med Chem Lett 1999; 9: 1–6. [PubMed: 9990446]. |
[68] | S. Girault, P. Grellier, A. Berecibar, L. Maes, E. Mouray, P. Lemiere, M. A Debeu, E Davioud-Charvet, C. J Sergheraert Med Chem 2000; 43: 2646–4654. |
APA Style
Dinka Mulugeta. (2022). A Review on Recent Trends in Copper-Catalyzed Organic Synthesis. Journal of Chemical, Environmental and Biological Engineering, 6(1), 24-33. https://doi.org/10.11648/j.jcebe.20220601.14
ACS Style
Dinka Mulugeta. A Review on Recent Trends in Copper-Catalyzed Organic Synthesis. J. Chem. Environ. Biol. Eng. 2022, 6(1), 24-33. doi: 10.11648/j.jcebe.20220601.14
@article{10.11648/j.jcebe.20220601.14, author = {Dinka Mulugeta}, title = {A Review on Recent Trends in Copper-Catalyzed Organic Synthesis}, journal = {Journal of Chemical, Environmental and Biological Engineering}, volume = {6}, number = {1}, pages = {24-33}, doi = {10.11648/j.jcebe.20220601.14}, url = {https://doi.org/10.11648/j.jcebe.20220601.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jcebe.20220601.14}, abstract = {Copper chemistry has great importance owing to its low cost, high functional group tolerance, high abundance, and low toxicity. In addition to natural copper-containing catalysts, significant efforts have been devoted to the development of man-made copper redox catalysts. Apart from these efforts, copper has become one of the most versatile and interesting bio-relevant metals in homogeneous catalysis. The review concentrates on various copper-catalyzed organic transformations covering areas such as heterocyclic synthesis, coupling reactions, asymmetric synthesis, click reactions, multicomponent reactions, C–H activation, trifluoromethylation reactions, and applications in the synthesis of natural products. Copper-catalyzed heterocyclic synthesis and multicomponent reactions were found to be important tools for the synthesis of many biologically active compounds. The review summarizes the developments in copper catalysis in the field of organic chemistry and discusses the future perspectives of copper catalysis for contemporary organic synthesis.}, year = {2022} }
TY - JOUR T1 - A Review on Recent Trends in Copper-Catalyzed Organic Synthesis AU - Dinka Mulugeta Y1 - 2022/05/31 PY - 2022 N1 - https://doi.org/10.11648/j.jcebe.20220601.14 DO - 10.11648/j.jcebe.20220601.14 T2 - Journal of Chemical, Environmental and Biological Engineering JF - Journal of Chemical, Environmental and Biological Engineering JO - Journal of Chemical, Environmental and Biological Engineering SP - 24 EP - 33 PB - Science Publishing Group SN - 2640-267X UR - https://doi.org/10.11648/j.jcebe.20220601.14 AB - Copper chemistry has great importance owing to its low cost, high functional group tolerance, high abundance, and low toxicity. In addition to natural copper-containing catalysts, significant efforts have been devoted to the development of man-made copper redox catalysts. Apart from these efforts, copper has become one of the most versatile and interesting bio-relevant metals in homogeneous catalysis. The review concentrates on various copper-catalyzed organic transformations covering areas such as heterocyclic synthesis, coupling reactions, asymmetric synthesis, click reactions, multicomponent reactions, C–H activation, trifluoromethylation reactions, and applications in the synthesis of natural products. Copper-catalyzed heterocyclic synthesis and multicomponent reactions were found to be important tools for the synthesis of many biologically active compounds. The review summarizes the developments in copper catalysis in the field of organic chemistry and discusses the future perspectives of copper catalysis for contemporary organic synthesis. VL - 6 IS - 1 ER -